A. | $\frac{{\sqrt{7}}}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{{\sqrt{7}}}{3}$ | D. | $\frac{1}{3}$ |
分析 由正弦定理化簡已知可得b2=a2+$\frac{1}{2}$ac=2a2,利用余弦定理可求cosB,從而得解.
解答 解:∵bsinB-asinA=$\frac{1}{2}$asinC,
∴由正弦定理可得:b2-a2=$\frac{1}{2}$ac,
又∵c=2a,
∴b2=a2+$\frac{1}{2}$ac=2a2,
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{3}{4}$.
故選:B.
點評 本題主要考查了正弦定理,余弦定理,同角三角函數(shù)基本關(guān)系式在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2≤x≤2} | B. | {x|x≤-2或x≥2} | C. | {x|-2<x<2} | D. | {x|x<-2或x>2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com