8.已知a,b∈R,則“a>b”是“a-3<b-3”的( 。
A.充分不必要條件B.必要不充分條件
C.既不充分也不必要D.充要條件

分析 當(dāng)a=0或b=0時(shí),a-3<b-3不成立;當(dāng)a<0或b>0時(shí),a-3<b-3成立,但是a>b不成立,即可判斷出結(jié)論.

解答 解:當(dāng)a=0或b=0時(shí),a-3<b-3不成立,∴“a>b”不是“a-3<b-3”的充分條件;
當(dāng)a<0或b>0時(shí),a-3<b-3成立,但是a>b不成立,∴“a>b”是“a-3<b-3”的必要條件.
∴“a>b”是“a-3<b-3”的既不充分也不必要.
故選:C.

點(diǎn)評(píng) 本題考查了不等式的性質(zhì)、簡(jiǎn)易邏輯的判斷方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)橫坐標(biāo)為xn,則log2012x1+log2012x2+…+log2012x2012的值為( 。
A.-log20122011B.-1C.-1+log20122011D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)y=$\sqrt{1-x}$+$\sqrt{2x}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,1]B.[0,+∞)C.(-∞,0]∪[1,+∞)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距為2$\sqrt{3}$,且橢圓C過(guò)點(diǎn)A(1,$\frac{{\sqrt{3}}}{2}$),
(Ⅰ)求橢圓C的方程;
(Ⅱ)若O是坐標(biāo)原點(diǎn),不經(jīng)過(guò)原點(diǎn)的直線l:y=kx+m與橢圓交于兩不同點(diǎn)P(x1,y1),Q(x2,y2),且y1y2=k2x1x2,求直線l的斜率k;
(Ⅲ)在(Ⅱ)的條件下,求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{2\sqrt{2}}{3}$,經(jīng)過(guò)橢圓的左頂點(diǎn)A(-3,0)作斜率為k(k≠0)的直線l交橢圓C于點(diǎn)D,交y軸與點(diǎn)E.
(1)求橢圓C的方程; 
(2)已知P為線段AD的中點(diǎn),OM∥l,并且OM交橢圓C于點(diǎn)M.
(i)是否存在定點(diǎn)Q,對(duì)于任意的k(k≠0)都有OP⊥EQ,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(ii)求$\frac{|AD|+|AE|}{|OM|}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知0<x<$\frac{2}{3}$,f(x)=x3,g(x)=x2,則f′(x)<g′(x)(填>或<).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)點(diǎn)(a,b)是區(qū)域$\left\{\begin{array}{l}{x+y-4≤0}\\{x>0}\\{y>0}\end{array}\right.$內(nèi)的任意一點(diǎn),則$\frac{b+2}{a+1}$的取值范圍是($\frac{2}{5}$,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1和定點(diǎn)A(6,0),O是坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P在橢圓C移動(dòng),$\overrightarrow{OA}$=$\overrightarrow{PB}$,點(diǎn)D是線段PB的中點(diǎn),直線OB與AD相交于點(diǎn)M,設(shè)$\overrightarrow{OM}$=λ$\overrightarrow{OB}$.
(Ⅰ)求λ的值;
(Ⅱ)求點(diǎn)M的軌跡E的方程,如果E是中心對(duì)稱圖形,那么類比圓的方程用配方求對(duì)稱中心的方法,求軌跡E的對(duì)稱中心;如果E不是中心對(duì)稱圖形,那么說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC中,若a=3,b=$\sqrt{3}$,A=$\frac{π}{3}$,則C的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案