3.如圖,在直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{2\sqrt{2}}{3}$,經(jīng)過橢圓的左頂點(diǎn)A(-3,0)作斜率為k(k≠0)的直線l交橢圓C于點(diǎn)D,交y軸與點(diǎn)E.
(1)求橢圓C的方程; 
(2)已知P為線段AD的中點(diǎn),OM∥l,并且OM交橢圓C于點(diǎn)M.
(i)是否存在定點(diǎn)Q,對于任意的k(k≠0)都有OP⊥EQ,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由;
(ii)求$\frac{|AD|+|AE|}{|OM|}$的最小值.

分析 (1)由橢圓的離心率及左頂點(diǎn)坐標(biāo),能求出a,b,由此能求出橢圓方程.
(2)(i)直線l的方程為y=k(x+3),與橢圓聯(lián)立,得(x+3)[(9k2+1)x+27k2-3]=0,由此利用韋達(dá)定理、直線垂直,結(jié)合題意能求出結(jié)果.
(ii)OM的方程可設(shè)為y=kx,由$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}+{y}^{2}=1}\\{y=kx}\end{array}\right.$,得M點(diǎn)的橫坐標(biāo)為x=$±\frac{3}{\sqrt{1+9{k}^{2}}}$,由OM∥l,把$\frac{|AD|+|AE|}{|OM|}$轉(zhuǎn)化為點(diǎn)的橫坐標(biāo)的關(guān)系求得答案.

解答 解:(1)∵橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{2\sqrt{2}}{3}$,左頂點(diǎn)A(-3,0),
∴$\left\{\begin{array}{l}{\frac{c}{a}=\frac{2\sqrt{2}}{3}}\\{a=3}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a=3,b=1,
∴橢圓C的方程為$\frac{{x}^{2}}{9}+{y}^{2}=1$.
(2)(i)直線l的方程為y=k(x+3),
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}+{y}^{2}=1}\\{y=k(x+3)}\end{array}\right.$,得(9k2+1)x2+54k2x+81k2-9=0,
整理,得:(x+3)[(9k2+1)x+27k2-3]=0,
∴${x}_{1}=-3,{x}_{2}=\frac{-27{k}^{2}+3}{9{k}^{2}+1}$,
當(dāng)x=$\frac{-27{k}^{2}+3}{9{k}^{2}+1}$時(shí),y=$\frac{6k}{9{k}^{2}+1}$,
∴D($\frac{3-27{k}^{2}}{1+9{k}^{2}}$,$\frac{6k}{1+9{k}^{2}}$),
∵點(diǎn)P為AD的中點(diǎn),∴P的坐標(biāo)為($\frac{-27{k}^{2}}{1+9{k}^{2}},\frac{3k}{1+9{k}^{2}}$),
∴${k}_{OP}=-\frac{1}{9k}$,(k≠0),
直線l的方程為y=k(x+3),令x=0,得E(0,3k),
假設(shè)存在定點(diǎn)Q(m,n),(m≠0),使得OP⊥EQ,
則kOPkEQ=-1,即-$\frac{1}{9k}•\frac{n-3k}{m}=-1$恒成立,
∴(9m+3)k-n=0恒成立,
∴$\left\{\begin{array}{l}{9m+3=0}\\{-n=0}\end{array}\right.$,即$\left\{\begin{array}{l}{m=-\frac{1}{3}}\\{n=0}\end{array}\right.$,
∴定點(diǎn)Q的坐標(biāo)為Q(-$\frac{1}{3}$,0).
(ii)∵OM∥l,∴OM的方程可設(shè)為y=kx,
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}+{y}^{2}=1}\\{y=kx}\end{array}\right.$,得M點(diǎn)的橫坐標(biāo)為x=$±\frac{3}{\sqrt{1+9{k}^{2}}}$,
由OM∥l,得$\frac{|AD|+|AE|}{|OM|}$=$\frac{|{x}_{D}-{x}_{A}|+|{x}_{E}-{x}_{A}|}{|{x}_{M}|}$
=$\frac{{x}_{D}-2{x}_{A}}{{x}_{M}}$=$\frac{\frac{3-27{k}^{2}}{1+9{k}^{2}}+6}{\frac{3}{\sqrt{1+9{k}^{2}}}}$=$\frac{3+9{k}^{2}}{\sqrt{1+9{k}^{2}}}$=$\sqrt{1+9{k}^{2}}+\frac{2}{\sqrt{1+9{k}^{2}}}$$≥2\sqrt{2}$,
當(dāng)且僅當(dāng)$\sqrt{1+9{k}^{2}}$=$\frac{2}{\sqrt{1+9{k}^{2}}}$,即k=$±\frac{1}{3}$時(shí)取等號,
∴當(dāng)k=$±\frac{1}{3}$時(shí),$\frac{|AD|+|AE|}{|OM|}$的最小值為2$\sqrt{2}$.

點(diǎn)評 本題考查橢圓方程的求法,考查滿足條件的定點(diǎn)是否存在的判斷與求法,考查代數(shù)式的最小值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意韋達(dá)定理、直線垂直、橢圓性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)=n-1,x∈[n,n+1],n∈N,則函數(shù)g(x)=f(x)-log2x的零點(diǎn)個(gè)數(shù)是( 。
A.1B.2C.3D.無數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f1(x)=cosx,f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),則f2016(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知x=-1是函數(shù)f(x)=(ax2+bx+c)ex(a,b,c∈R)的一個(gè)極值點(diǎn),四位同學(xué)分別給出下列結(jié)論,其中有一個(gè)結(jié)論是一定不成立的,則這個(gè)結(jié)論是(  )
A.a=0B.b=0C.c≠0D.a=c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知拋物線C:y=$\frac{1}{2}$x2與直線l:y=kx-1(k為常數(shù))沒有公共點(diǎn),設(shè)點(diǎn)P為直線l上的動(dòng)點(diǎn),且P的橫坐標(biāo)為x0,Q(k,1)為定點(diǎn)
(1)求拋物線C的準(zhǔn)線方程;
(2)若點(diǎn)P與定點(diǎn)Q的連線交拋物線C于M,N兩點(diǎn),求證:|PM|•|ON|=|PN|•|QM|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a,b∈R,則“a>b”是“a-3<b-3”的( 。
A.充分不必要條件B.必要不充分條件
C.既不充分也不必要D.充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=cos2x+2$\sqrt{3}$sinxcosx.
(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)在△ABC中,角A、B、C所對邊分別是a,b,c,若f($\frac{A}{2}$)=2,且b+c=4,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列結(jié)論:
①若y=cosx,y′=-sinx;      ②若y=-$\frac{1}{\sqrt{x}}$,y′=$\frac{1}{2x\sqrt{x}}$;③若f(x)=$\frac{1}{{x}^{2}}$,f′(3)=-$\frac{2}{27}$;   ④若y=3,則y′=0.
正確個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且以原點(diǎn)為圓心,橢圓的焦距為直徑的圓與直線x•sinθ+y•cosθ-1=0相切(θ為常數(shù)).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)如圖,若橢圓C的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2的直線l與橢圓分別交于兩點(diǎn)M、N,求$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{1}N}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案