7.函數(shù)f(x)=2x2-alnx在[1,+∞)內(nèi)存在單調(diào)減區(qū)間,則實數(shù)a的取值范圍是(4,+∞).

分析 函數(shù)f(x)在[1,+∞)內(nèi)存在單調(diào)減區(qū)間,可得f′(x)≤0在x∈[1,+∞)內(nèi)成立,運用參數(shù)分離,再由二次函數(shù)的最值,求得最小值,即可得到a的范圍.

解答 解:f(x)的導(dǎo)數(shù)為f′(x)=4x-$\frac{a}{x}$,
∵函數(shù)f(x)在x∈[1,+∞)內(nèi)存在單調(diào)遞減區(qū)間,
∴f′(x)≤0在x∈[1,+∞)內(nèi)成立,
∴4x-$\frac{a}{x}$≤0,即有a≥4x2
∵x≥1,∴4x2≥4,
則a≥4,
當(dāng)a=4時,f′(x)=4x-$\frac{4}{x}$,
由f′(x)≤0,可得-1≤x≤1,
即有a=4不成立.
∴實數(shù)a的取值范圍是(4,+∞).
故答案為:(4,+∞).

點評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,注意運用參數(shù)分離和函數(shù)成立思想的運用,屬于基礎(chǔ)題和易錯題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=\sqrt{3}sinxcosx-{cos^2}x$.
(1)求f(x)的最小正周期;
(2)若f(x)=-1,求$cos(\frac{2π}{3}-2x)$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知x1、x2是函數(shù)f(x)=x2-mx+2lnx+4的兩個極值點,a、b、c是函數(shù)f(x)的零點,x1、a、x2成等比數(shù)列.
(Ⅰ)求實數(shù)m的值;
(Ⅱ)求證:a>bc(參考數(shù)據(jù):ln3=1.1);
(Ⅲ)關(guān)于x的不等式kx2-2(1-bc-k)lnx-k≥0恒成立,試用bc表示實數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓E:$\frac{x^2}{b^2}+\frac{y^2}{a^2}$=1(a>b>0),離心率為$\frac{{\sqrt{2}}}{2}$,且過點A(-1,0).
(Ⅰ)求橢圓E的方程.
(Ⅱ)若橢圓E的任意兩條互相垂直的切線相交于點P,證明:點P在一個定圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.正六棱錐的底面周長為6,高為$\sqrt{3}$,那么它的側(cè)棱長是2,斜高是$\frac{\sqrt{15}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線y=kx+3與圓(x-1)2+(y+2)2=4相交于M,N兩點,若$MN≥2\sqrt{3}$,則實數(shù)k的取值范圍是$({-∞,-\frac{12}{5}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法正確的個數(shù)有(  )個.
(1)若α,β垂直于同一平面,則α與β平行;
(2)“如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β”的逆否命題為真命題;
(3)“若m>2,則方程$\frac{x^2}{m-1}+\frac{y^2}{2-m}$=1表示雙曲線”的否命題為真命題;
(4)“a=1”是“直線l1:ax+2y=0與直線l2:x+(a+1)y+4=0平行”的充分不必要條件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=2x3+ax2+2在x=1時取得極值.
(1)求a;
(2)求f(x)在$[-\frac{1}{2},2]$上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知x+$\frac{1}{x}$=2cosθ,計算x2+$\frac{1}{{x}^{2}}$,x3+$\frac{1}{{x}^{3}}$.并由計算的結(jié)果猜想xn+$\frac{1}{{x}^{n}}$的表達式.

查看答案和解析>>

同步練習(xí)冊答案