19.下列說法正確的個數(shù)有( 。﹤.
(1)若α,β垂直于同一平面,則α與β平行;
(2)“如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β”的逆否命題為真命題;
(3)“若m>2,則方程$\frac{x^2}{m-1}+\frac{y^2}{2-m}$=1表示雙曲線”的否命題為真命題;
(4)“a=1”是“直線l1:ax+2y=0與直線l2:x+(a+1)y+4=0平行”的充分不必要條件.
A.1B.2C.3D.4

分析 (1),(4)可根據(jù)概念直接判斷;
(2),(3)根據(jù)原命題和逆否命題等價,逆命題和否命題等價進行判斷.

解答 解(1)若α,β垂直于同一平面,則α與β平行或相交,故錯誤;
(2)“如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β”該命題正確,故其逆否命題為真命題,故正確;
(3)“若m>2,則方程$\frac{x^2}{m-1}+\frac{y^2}{2-m}$=1表示雙曲線”的逆命題為若方程$\frac{x^2}{m-1}+\frac{y^2}{2-m}$=1表示雙曲線,則m>2,為假命題,m<1也成立,故否命題為假命題,故錯誤;
(4)直線l1:ax+2y=0與直線l2:x+(a+1)y+4=0平行,
∴-$\frac{a}{2}$=-$\frac{1}{a+1}$,
∴a=-2或a=1,故是充分不必要條件,故正確.
故選B.

點評 考查了四種命題間的等價關系,做題中若原命題不好判斷,可判斷其等價的逆否命題的真假情況.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.給出下列四個命題,其中正確命題的序號是(  )
①已知f(x)=x2+bx+c是偶函數(shù),則b=0
②若函數(shù)f(x)的值域為[0,2],則函數(shù)f(2x)的值域為[0,2]
③若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,4];
④已知集合P={a,b},Q={-1,0,1}則映射f:P→Q中滿足f(b)=0的映射共有3個.
⑤如果二次函數(shù)y=3x2+2(a-1)x+b在區(qū)間(-∞,1]上是減函數(shù),那么a的取值范圍是a≤-2.
A.①②⑤B.①②④⑤C.①②③⑤D.①③④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設A為4×3階矩陣,且r(A)=2,而B=$[\begin{array}{l}{1}&{0}&{2}\\{0}&{2}&{0}\\{-1}&{0}&{3}\end{array}]$,則r(AB)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)f(x)=2x2-alnx在[1,+∞)內(nèi)存在單調(diào)減區(qū)間,則實數(shù)a的取值范圍是(4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.直線3x-2y-6=0的橫、縱截距之和等于( 。
A.-1B.1C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在等差數(shù)列{an}中,a3+a4+a5=21,a9=17.
(1)求數(shù)列{an}的通項公式;
(2)令bn=2an-an(n∈N*),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設f(x)是定義在R上的導函數(shù)恒大于零的函數(shù),且滿足$\frac{f(x)}{f'(x)}$+x<1,則y=f(x)的零點個數(shù)為( 。
A.1B.0C.2D.0或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某市政府欲在如圖所示的矩形ABCD的非農(nóng)業(yè)用地中規(guī)劃出一個休閑娛樂公園(如圖中陰影部分),形狀為直角梯形OPRE(線段EO和RP為兩條底邊),已知AB=2km,BC=6km,AE=BF=4km,其中曲線AF是以A為頂點、AD為對稱軸的拋物線的一部分.
(1)以A為原點,AB所在直線為x軸建立直角坐標系,求曲線AF所在拋物線的方程;
(2)求該公園的最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列各組函數(shù)中,表示同一函數(shù)的是(  )
A.f(x)=2x-1•2x+1,g(x)=4xB.$f(x)=\sqrt{x^2},g(x)={({\sqrt{x}})^2}$
C.$f(x)=\frac{{{x^2}-2}}{{x-\sqrt{2}}},g(x)=x+\sqrt{2}$D.$f(x)=\sqrt{x+1}•\sqrt{x-1},g(x)=\sqrt{{x^2}-1}$

查看答案和解析>>

同步練習冊答案