5.已知θ∈[$-\frac{π}{3}$,$\frac{π}{4}}$],則函數(shù)y=tan2θ+2tanθ+3的最小值為2,其相應(yīng)的θ值為$-\frac{π}{4}$.

分析 設(shè)x=tanθ,由θ∈[$-\frac{π}{3}$,$\frac{π}{4}}$]和正切函數(shù)的單調(diào)性求出x的范圍,代入原函數(shù)后利用配方法化簡,由二次函數(shù)的性質(zhì)求出函數(shù)的最小值,由特殊角的正切值求出θ的值.

解答 解:設(shè)x=tanθ,由θ∈[$-\frac{π}{3}$,$\frac{π}{4}}$]得x∈$[-\sqrt{3},1]$,
則原函數(shù)變?yōu)椋篺(x)=x2+2x+3=(x+1)2+2,
∴當x=-1時,f(x)取到最小值2,
此時θ=$-\frac{π}{4}$,函數(shù)y=tan2θ+2tanθ+3,取到最小值是2,
故答案為:2;$-\frac{π}{4}$.

點評 本題考查正切函數(shù)的單調(diào)性、函數(shù)值,二次函數(shù)的性質(zhì),以及換元法的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求實數(shù)m的取值范圍,使關(guān)于x的方程x2+2(m-1)x+2m+6=0
(1)有兩個正實數(shù)根;
(2)有兩個實數(shù)根,且一個比2大,一個比2小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求下列函數(shù)的導(dǎo)數(shù):
(1)f(x)=(x+1)(x+2)(x+3);
(2)y=e-xsin2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.甲、乙兩名乒乓球運動員進行乒乓球單打比賽,根據(jù)以往比賽的勝負情況,每一局甲勝的概率為$\frac{2}{3}$,乙勝的概率為$\frac{1}{3}$,如果比賽采用“五局三勝制”(先勝三局者獲勝,比賽結(jié)束).
(1)求甲獲得比賽勝利的概率;
(2)設(shè)比賽結(jié)束時的局數(shù)為X,求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,一個直角走廊的寬分別為a米、b米,一鐵棒欲通過該直角走廊,設(shè)鐵棒與廊壁成θ角.求:
(1)棒長L(用含θ的表達式表示);
(2)當a=b=2米時,能夠通過這個直角走廊的鐵棒的長度的最大值.(參考公式:sinθ+cosθ=$\sqrt{2}$sin(θ+$\frac{π}{4}$),sin2θ=2sinθcosθ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)(1-$\frac{1}{2}$x)n=a0+a1x+a2x2+${a_3}{x^3}$+…+${a_n}{x^n}$,若|a0|,|a1|,|a2|成等差數(shù)列.
(1)求(1-$\frac{1}{2}$x)n展開式的中間項;
(2)求(1-$\frac{1}{2}$x)n展開式中所有含x奇次冪的系數(shù)和;
(3)求a1+2a2+3a3+…+nan的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.一個口袋中裝有大小相同的3個白球和1個紅球,從中有放回地摸球,每次摸出一個,若有3次摸到紅球即停止.
(1)求恰好摸4次停止的概率;
(2)記4次之內(nèi)(含4次)摸到紅球的次數(shù)為X,求隨機變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=$\sqrt{|x|(x-1)}$的定義域為( 。
A.{x|x≥1}B.{x|x≥1或x=0}C.{x|x≥0}D.{x|x=0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.函數(shù)f(x)=cos($\frac{1}{2}$x+$\frac{π}{4}$)在x取何值時達到最大值、最小值?

查看答案和解析>>

同步練習(xí)冊答案