分析 (I)利用等差數(shù)列的通項公式及其求和公式即可得出.
(Ⅱ)${b_n}={a_{3^n}}=2•{3^n}-3$,再利用等比數(shù)列的求和公式即可得出.
解答 解:(Ⅰ) 由已知,設(shè){an}公差為d,∵第10項等于17,前10項的和等于80,則$\left\{\begin{array}{l}{a_{10}}={a_1}+9d=17\\{S_{10}}=10{a_1}+45d=80\end{array}\right.$,解得 a1=-1,d=2,
∴an=-1+2(n-1)=2n-3.
(Ⅱ)${b_n}={a_{3^n}}=2•{3^n}-3$,
∴Tn=b1+b2+…bn=2(3+32+…+3n)-3n=$\frac{{6(1-{3^n})}}{1-3}-3n$=3n+1-3n-3.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其求和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{60}{119}$ | B. | $\frac{120}{119}$ | C. | -$\frac{60}{119}$ | D. | -$\frac{120}{119}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 恒小于0 | B. | 恒大于0 | C. | 等于0 | D. | 無法判斷 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -5或2 | B. | -1或4 | C. | -5或4 | D. | -5或-1或2或4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com