分析 由題意直接求出函數(shù)的最大值A(chǔ),通過點(diǎn)P的坐標(biāo)為(2,A),點(diǎn)R的坐標(biāo)為(2,0).若∠PRQ=$\frac{2π}{3}$,畫出圖象,求出函數(shù)的周期,然后求出最大值,即可得解.
解答 解:如圖,
因?yàn)辄c(diǎn)P的坐標(biāo)為(2,A),點(diǎn)R的坐標(biāo)為(2,0).
若∠PRQ=$\frac{2π}{3}$,
所以∠SRQ=$\frac{2π}{3}$-$\frac{π}{2}$=$\frac{π}{6}$.
SQ=A,
RS=$\frac{T}{2}$=$\frac{π}{\frac{π}{6}}$=6,
所以,tan$\frac{π}{6}$=$\frac{SQ}{RS}$=$\frac{A}{6}$=$\frac{\sqrt{3}}{3}$,
A=2$\sqrt{3}$.
故答案為:2$\sqrt{3}$.
點(diǎn)評 本題考查三角函數(shù)的解析式的求法,考查函數(shù)的圖象的應(yīng)用,考查計(jì)算能力和數(shù)形結(jié)合思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-3,3] | B. | (-3,3) | C. | $[{-\sqrt{3},\sqrt{3}}]$ | D. | $({-\sqrt{3},\sqrt{3}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x3 | B. | y=lgx | C. | y=|x| | D. | y=x-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com