過點A(11,2)作圓x2+y2+2x-4y-164=0的弦,其中弦長為整數(shù)的共有(  )
A.16條B.17條C.32條D.34條
C
∵圓的標(biāo)準(zhǔn)方程為:(x+1)2+(y-2)2=132,則圓心為C(-1,2),半徑為r=13.∵|CA|=12,∴經(jīng)過A點且垂直于CA的弦是經(jīng)過A的最短的弦,其長度為2=10;而經(jīng)過A點的最長的弦為圓的直徑2r=26;
∴經(jīng)過A點且為整數(shù)的弦長還可以取11,12,13,14,…,25共15個值,又由圓內(nèi)弦的對稱性知,經(jīng)過某一點的弦的長若介于最大值與最小值之間,則一定有2條,而最長的弦與最短的弦各只有1條,故一共有15×2+2=32(條).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓.
(1)若圓的切線在軸和軸上的截距相等,且截距不為零,求此切線的方程;
(2)從圓外一點向該圓引一條切線,切點為為坐標(biāo)原點,且有,求使的長取得最小值的點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動圓與直線相切且與圓外切。
(1)求圓心的軌跡方程;
(2)過定點作直線交軌跡兩點,點關(guān)于坐標(biāo)原點的對稱點,求證:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過圓x2y2=1上一點作圓的切線與x軸、y軸的正半軸交于AB兩點,則|AB|的最小值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C的圓心與點P(-2,1)關(guān)于直線y=x+1對稱,直線3x+4y-11=0與圓C相交于A、B兩點,且=6,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知直線lyx,圓C1的圓心為(3,0),且經(jīng)過點A(4,1).
 
(1)求圓C1的方程;
(2)若圓C2與圓C1關(guān)于直線l對稱,點B、D分別為圓C1C2上任意一點,求|BD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點P(a,b)(ab≠0)是圓x2+y2=r2內(nèi)的一點,直線m是以P為中點的弦所在的直線,直線l的方程為ax+by=r2,那么(  )
A.m∥l,且l與圓相交B.m⊥l,且l與圓相切
C.m∥l,且l與圓相離D.m⊥l,且l與圓相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

x2y2+2x+4y-15=0上到直線x-2y=0的距離為的點的個數(shù)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓C:x2+y2=2與直線l:x+y+=0,則圓C被直線l所截得的弦長為(  )
A.1B.C.2D.2

查看答案和解析>>

同步練習(xí)冊答案