5.設(shè)集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},則B=( 。
A.{1,-3}B.{1,5}C.{1,0}D.{1,3}

分析 由交集的定義可得1∈A且1∈B,代入二次方程,求得m,再解二次方程可得集合B.

解答 解:集合A={1,2,4},B={x|x2-4x+m=0}.
若A∩B={1},則1∈A且1∈B,
可得1-4+m=0,解得m=3,
即有B={x|x2-4x+3=0}={1,3}.
故選:D.

點(diǎn)評(píng) 本題考查了交集及其運(yùn)算,考查了一元二次不等式的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知銳角α,β滿足sin(α+β)cosβ=2cos(α+β)sinβ,當(dāng)α取得最大值時(shí),tan2α=$\frac{4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\overrightarrow{a}$=(sinθ,-1),$\overrightarrow$=($\frac{1}{3}$,cosθ},且$\overrightarrow{a}$∥$\overrightarrow$,則sin2θ的值為( 。
A.$\frac{1}{6}$B.-$\frac{1}{6}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知O為坐標(biāo)原點(diǎn),對(duì)于函數(shù)f(x)=asinx+bcosx,稱向量$\overrightarrow{OM}=(a,b)$為函數(shù)f(x)的伴隨向量,同時(shí)稱函數(shù)f(x)為向量$\overrightarrow{OM}$的伴隨函數(shù).
(Ⅰ)設(shè)函數(shù)$g(x)=-sin(\frac{3π}{2}-x)+\sqrt{3}sin(π+x)$,試求g(x)的伴隨向量$\overrightarrow{OM}$;
(Ⅱ)記向量$\overrightarrow{ON}=(1,2)$的伴隨函數(shù)為f(x),求當(dāng)$f(x)=\frac{{4\sqrt{5}}}{5}$且$x∈(0,\frac{π}{2})$時(shí)sinx的值;
(Ⅲ)由(Ⅰ)中函數(shù)g(x)的圖象(縱坐標(biāo)不變)橫坐標(biāo)伸長為原來的2倍,再把整個(gè)圖象向右平移$\frac{2π}{3}$個(gè)單位長度得到h(x)的圖象.已知A(-2,3)B(2,6),問在y=h(x)的圖象上是否存在一點(diǎn)P,使得$\overrightarrow{AP}⊥\overrightarrow{BP}$.若存在,求出P點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知命題p:?x∈R,sinx>1,命題q:?a,b∈(0,+∞),$\frac{a+b}{2}$≥$\sqrt{ab}$,則下列判斷錯(cuò)誤的是( 。
A.p或q為真,非q為假B.p或q為真,非p為真
C.p且q為假,非p為假D.p且q為假,p或q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.投籃測試中,每人投3次,至少投中2次才能通過測試.已知某同學(xué)每次投籃投中的概率為0.6,且各次投籃是否投中相互獨(dú)立,則該同學(xué)通過測試的概率為(  )
A.0.312B.0.36C.0.432D.0.648

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知α,β,γ均為銳角,且cos2α+cos2β+cos2γ=1,求證:$\frac{3π}{4}$<α+β+γ<π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$).若f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$
(1)求f(x)遞增區(qū)間;
(2)△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且(2a-c)cosB=bcosC,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),|$\overrightarrow$|=2.
(1)若<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$,求$\overrightarrow{a}$•$\overrightarrow$和|$\overrightarrow{a}$-2$\overrightarrow$|;
(2)若$\overrightarrow{a}$⊥$\overrightarrow$,求向量$\overrightarrow$的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案