16.已知向量$\overrightarrow{a}$=(sinθ,-1),$\overrightarrow$=($\frac{1}{3}$,cosθ},且$\overrightarrow{a}$∥$\overrightarrow$,則sin2θ的值為( 。
A.$\frac{1}{6}$B.-$\frac{1}{6}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

分析 利用向量共線,列出方程,轉(zhuǎn)化求解三角函數(shù)值即可.

解答 解:向量$\overrightarrow{a}$=(sinθ,-1),$\overrightarrow$=($\frac{1}{3}$,cosθ},且$\overrightarrow{a}$∥$\overrightarrow$,
可得sinθcosθ=-$\frac{1}{3}$,
則sin2θ=$-\frac{2}{3}$.
故選:D.

點(diǎn)評(píng) 本題考查二倍角公式的應(yīng)用,向量平行的充要條件的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等比數(shù)列{an},a1=36,a5=$\frac{9}{4}$,求q和S5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.不等式ex≥kx對任意實(shí)數(shù)x恒成立,則實(shí)數(shù)k的取值范圍為[0,e].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線m,n與平面α,β,γ滿足α⊥β,α∩β=m,n⊥α,n?γ,則下列判斷一定正確的是( 。
A.m∥n,α⊥γB.n∥β,α⊥γC.β∥γ,α⊥γD.m⊥n,α⊥γ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=xe2x+alnx+2ax(a∈R).
(1)當(dāng)a<0時(shí),討論函數(shù)f(x)的零點(diǎn)的個(gè)數(shù);
(2)若x>0時(shí),恒有f(x)<alnx+2ax+(2-k)(e4x-1)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.四位同學(xué)根據(jù)各自的樣本數(shù)據(jù)研究變量x,y之間的相關(guān)關(guān)系,并求得回歸直線方程,分別得到以下結(jié)論:
①y與x負(fù)相關(guān)且$\widehat{y}$=-2.756x+7.325;
②y與x負(fù)相關(guān)且$\widehat{y}$=3.476x+5.648;
③y與x正相關(guān)且$\widehat{y}$=-1.226x-6.578;
④y與x正相關(guān)且$\widehat{y}$=8.967x+8.163.
其中一定不正確的結(jié)論的序號(hào)是( 。
A.①②B.②③C.③④D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.盒中裝有10只乒乓球,其中6只新球,4只舊球,任意摸出2個(gè)球使用,已知其中一個(gè)是新球的條件下,另一個(gè)也是新球的概率為( 。
A.$\frac{5}{13}$B.$\frac{5}{18}$C.$\frac{1}{3}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},則B=( 。
A.{1,-3}B.{1,5}C.{1,0}D.{1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足cos A=$\frac{3}{5}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=6.
(1)求△ABC的面積;
(2)若b+c=7,求a的值.

查看答案和解析>>

同步練習(xí)冊答案