分析 由分段函數(shù)先求f(9)=-2,再求f(-2);對a討論,結(jié)合對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性,最后求并集即可得到所求范圍.
解答 解:由f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{3}}x,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,
即有f(9)=$lo{g}_{\frac{1}{3}}9$=-2,
f(f(9))=f(-2)=2-2=$\frac{1}{4}$,
f(a)>$\frac{1}{2}$即為$\left\{\begin{array}{l}{a>0}\\{lo{g}_{\frac{1}{3}}a>\frac{1}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{a≤0}\\{{2}^{a}>\frac{1}{2}}\end{array}\right.$,
即有$\left\{\begin{array}{l}{a>0}\\{a<\frac{\sqrt{3}}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{a≤0}\\{a>-1}\end{array}\right.$,
即有0<a<$\frac{\sqrt{3}}{3}$或-1<a≤0,
即有-1<a<$\frac{\sqrt{3}}{3}$.
故答案為:$\frac{1}{4}$,(-1,$\frac{\sqrt{3}}{3}$).
點評 本題考查分段函數(shù)的運用:求函數(shù)值和解不等式,同時考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x>-3 | B. | x<-3 | ||
C. | x=-3 | D. | x與-3的大小不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$ | B. | -$\frac{2}{3}$$\overrightarrow{a}$+$\frac{5}{3}$$\overrightarrow$ | C. | $\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow$ | D. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com