7.下列圖形中,表示函數(shù)圖象的個(gè)數(shù)是(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

分析 根據(jù)函數(shù)的定義,對(duì)定義域內(nèi)任意的一個(gè)x都存在唯一的y與之對(duì)應(yīng)可求.

解答 解:根據(jù)函數(shù)的定義,對(duì)定義域內(nèi)任意的一個(gè)x都存在唯一的y與之對(duì)應(yīng),
若為函數(shù)關(guān)系,其對(duì)應(yīng)方式為一對(duì)一或多對(duì)一,
根據(jù)圖象第1、2個(gè)圖象,適合函數(shù)的要求,
故選:B.

點(diǎn)評(píng) 本題主要考查了函數(shù)定義,要注意正確理解函數(shù)的概念,構(gòu)成函數(shù)的對(duì)應(yīng)關(guān)系必須形成一對(duì)一或多對(duì)一,但是不能一對(duì)多,屬于基礎(chǔ)試題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.等差數(shù)列{an}中,Sn是其前n項(xiàng)和,a1=-9,$\frac{S_9}{9}-\frac{S_7}{7}$=2,則S10=( 。
A.0B.-9C.10D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.△ABC是邊長為2的等邊三角形,已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{a}$+2$\overrightarrow$,則下列結(jié)論錯(cuò)誤的是( 。
A.|$\overrightarrow$|=1B.($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$C.$\overrightarrow{a}$•$\overrightarrow$=1D.|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列說法正確的是( 。
A.“x2+x-2>0”是“x>1”的充分不必要條件
B.“若am2<bm2,則a<b”的逆否命題為真命題
C.命題“?x∈R,使得2x2-1<0”的否定是“?x∈R,均有2x2-1>0”
D.命題“若x=$\frac{π}{4}$,則tanx=1”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{1}{2}n{a_n}+{a_n}$-c(c是常數(shù),n∈N*),a2=6.
(I)求c的值及數(shù)列{an}的通項(xiàng)公式;
(II)設(shè)bn=$\frac{{{a_n}-2}}{{{2^{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列四個(gè)函數(shù):
①y=3-x;②y=2x-1(x>0);③y=x2+2x-10,;④$\left\{\begin{array}{l}{x(x≤0)}\\{\frac{1}{x}(x>0)}\end{array}\right.$.
其中定義域與值域相同的函數(shù)有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知全集為實(shí)數(shù)集R,集合A={x|y=$\sqrt{x-1}$+$\sqrt{3-x}$},B={x|2x>4}
( I)分別求A∪B,A∩B,(∁UB)∪A
( II)已知集合C={x|1<x<a},若C⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.過點(diǎn)M(-2,0)的直線l與雙曲線x2-2y2=2交于P1,P2線段P1P2的中點(diǎn)為P.設(shè)直線l的斜率為k1(k1≠0),直線OP的斜率為k2,則k1k2等于( 。
A.-2B.2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)命題P:?n∈N,n2≤2n,則¬P為(  )
A.?n∈N,n2≤2nB.?n∈N,n2>2nC.?n∈N,n2>2nD.?n∈N,n2=2n

查看答案和解析>>

同步練習(xí)冊(cè)答案