10.已知函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)-1
(1)求函數(shù)f(x)的最大值和最小值及取得最大、最小值時(shí)的自變量x的集合;
(2)當(dāng)x∈[-π,π]時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間.

分析 (1)利用正弦函數(shù)的最值,求得f(x)的最大值和最小值及取得最大、最小值時(shí)的自變量x的集合.
(2)利用正弦函數(shù)的單調(diào)性,求得函數(shù)的增區(qū)間,再根據(jù)x∈[-π,π],可得結(jié)論.

解答 解:(1)對于函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)-1,它的最大值為1,
此時(shí),2x+$\frac{π}{6}$=$\frac{π}{2}$+2kπ,k∈Z,即x的取值集合為{x|x=kπ+$\frac{π}{6}$,k∈Z};
它的最大值為1,此時(shí),2x+$\frac{π}{6}$=-$\frac{π}{2}$+2kπ,k∈Z,即x的取值集合為{x|x=kπ-$\frac{π}{3}$,k∈Z}.
(2)令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,
可得函數(shù)的增區(qū)間為[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
再根據(jù)x∈[-π,π],可得增區(qū)間為[-π,-$\frac{5π}{6}$]、[-$\frac{π}{3}$,$\frac{π}{6}$]、[$\frac{2π}{3}$,π].

點(diǎn)評 本題主要考查正弦函數(shù)的最值,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.等差數(shù)列{an}的前n項(xiàng)和為Sn=$\frac{n}{2}$(3n+5),正項(xiàng)等比數(shù)列{bn}中,b2=4,b1b7=256.
(Ⅰ)求{an}與{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=anbn,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知點(diǎn)A(1,0)和圓B:(x+1)2+y2=64,P是圓上任一點(diǎn),求線段AP的垂直平分線l與線段PB的交點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,則$f(\frac{π}{3})$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.給出定義:若$m-\frac{1}{2}<x≤m+\frac{1}{2}$(m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x}=m.下列關(guān)于函數(shù)f(x)=|x-{x}|的四個(gè)結(jié)論:
①函數(shù)y=f(x)的定義域?yàn)镽,值域?yàn)?[0,\frac{1}{2}]$;
②函數(shù)y=f(x)的圖象關(guān)于直線$x=\frac{k}{2}(k∈Z)$對稱;
③函數(shù)y=f(x)在$[-\frac{1}{2},\frac{1}{2}]$上是增函數(shù);
④對任意實(shí)數(shù)x,都有f(-x)=f(x)
其中正確結(jié)論的序號是( 。
A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.化簡:$\frac{sin(α-3π)+cos(π-α)+sin(\frac{π}{2}-α)-2cos(\frac{π}{2}+α)}{-sin(-α)+cos(π+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0)滿足條件:f(1+x)=f(1-x),且方程f(x)=2x有兩等根.
(1)求f(x)的解析式.
(2)求f(x)在[0,t]上的最大值.
(3)是否存在實(shí)數(shù)m、n(m<n),使f(x)的定義域和值域分別為[m,n]和[4m,4n],如果存在,求出m、n的值,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)拋物線y2=16x的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA和l垂直,A為垂足,如果直線AF的斜率為$-\sqrt{3}$,則|PF|=( 。
A.16B.8C.$8\sqrt{3}$D.$16\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}為等差數(shù)列,a1+a5=-20,a3+a8=-10.
(1)求數(shù)列{an}的通項(xiàng);
(2)當(dāng)n取何值時(shí),數(shù)列{an}的前n項(xiàng)和Sn最。坎⑶蟪龃俗钚≈担

查看答案和解析>>

同步練習(xí)冊答案