19.如圖程序框圖的算法思路源于數(shù)學(xué)名著《幾何原本》中的“輾轉(zhuǎn)相除法”,執(zhí)行該程序框圖(圖中“aMODb”表示a除以b的余數(shù)),若輸入的a,b分別為595,245,則輸出的a=(  )
A.490B.210C.105D.35

分析 由循環(huán)結(jié)構(gòu)的特點(diǎn),先判斷,再執(zhí)行,可得答案.

解答 解:輾轉(zhuǎn)相除法是求兩個(gè)正整數(shù)之最大公約數(shù)的算法,
595=245×2+105,245=105×2+35,105=35×3,
所以a=35,
故選D.

點(diǎn)評(píng) 本題考查算法和程序框圖,主要考查循環(huán)結(jié)構(gòu)的理解和運(yùn)用,以及賦值語(yǔ)句的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.現(xiàn)有兩個(gè)推理:①在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中“四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積”;
②由“若數(shù)列{an}為等差數(shù)列,則有$\frac{{a}_{6}+{a}_{7}+…+{a}_{10}}{5}$=$\frac{{a}_{1}+{a}_{2}+…+{a}_{15}}{15}$成立”類比“若數(shù)列{bn}為等比數(shù)列,則有$\root{5}{_{6}{•b}_{7}…_{10}}$=$\root{15}{_{1}{•b}_{2}…_{15}}$成立”,則得出的兩個(gè)結(jié)論(  )
A.都正確B.只有②正確C.只有①正確D.都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.計(jì)算定積分$\int{\begin{array}{l}1\\{-1}\end{array}}({{x^2}+sinx})dx$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知定義在R上的單調(diào)函數(shù)f(x)滿足對(duì)任意的x1、x2,都有f(x1+x2)=f(x1)+f(x2)成立.若正實(shí)數(shù)a,b滿足f(a)+f(2b-1)=0,則$\frac{1}{a}$+$\frac{8}$的最小值為25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某考點(diǎn)2016年參加教師資格考試的人群由兩部分組成,分別為在職人員與社會(huì)人員,現(xiàn)利用隨機(jī)抽樣的方法抽取50名參考人員研究它們的考試成績(jī),并將考試成績(jī)和頻數(shù)統(tǒng)計(jì)如下表所示:
組別[65,75)[75,85)[85,95)[95,105)[105,115)[115,150)
頻數(shù)341315105
將頻率作為概率,解決下列問(wèn)題:
(1)在這50名參考人員中任取一位,求分?jǐn)?shù)不低于105分的概率;
(2)為了進(jìn)一步了解這些參考人員的得分情況,再?gòu)姆謹(jǐn)?shù)在[65,75)的參考人員A,B,C中選出2位,從分?jǐn)?shù)在[115,150)中的參考人員D,E,F(xiàn),G,H中選出1位進(jìn)行研究,求A和D同時(shí)被選到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=x3-3x2-7x-4的圖象在點(diǎn)(-1,f(-1))處的切線方程為( 。
A.2x-y+1=0B.2x-y-1=0C.2x+y+3=0D.2x+y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知A,B分別為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)在x軸正半軸,y軸正半軸上的頂點(diǎn),原點(diǎn)O到直線AB的距離為$\frac{{2\sqrt{21}}}{7}$,且|AB|=$\sqrt{7}$.
(1)求橢圓C的離心率;
(2)直線l:y=kx+m(-1≤k≤2)與圓x2+y2=2相切,并與橢圓C交于M,N兩點(diǎn),求|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),可推知正四面體的下列性質(zhì),則比較恰當(dāng)?shù)氖牵ā 。?br />①各棱長(zhǎng)相等,同一頂點(diǎn)上的任意兩條棱的夾角相等;
②各個(gè)面是全等的正三角形,相鄰的兩個(gè)面所成的二面角相等;
③各個(gè)面都是全等的正三角形,同一頂點(diǎn)的任意兩條棱的夾角相等;
④各棱長(zhǎng)相等,相鄰兩個(gè)面所成的二面角相等.
A.①④B.①②C.①②③D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.定義n!=1×2×…×n,下面是求10!的程序,則_____處應(yīng)填的條件是(  )
A.i>10B.i>11C.i<=10D.i<=11

查看答案和解析>>

同步練習(xí)冊(cè)答案