如圖,平行四邊形中,,,,。

(1)用表示;
(2)若,,,分別求的值。

(1);(2).

解析試題分析:(1);(2)有已知可得求,求采用求向量的平方再開(kāi)方的方法,求,先用表示,而,從而所求轉(zhuǎn)化為有關(guān)的數(shù)量積運(yùn)算.
試題解析:(1):        .2分 
    .4分 
 
(2): ,
  .6分 
   .8分
由(1),得,  .10分
  .12分
     .14分
考點(diǎn):平面向量的基本定理及數(shù)量及運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量=(3,-4),=(6,-3),=(5-m,-3-m).
(1)若點(diǎn)A,B,C不能構(gòu)成三角形,求實(shí)數(shù)m滿(mǎn)足的條件;
(2)若△ABC為直角三角形,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知平面直角坐標(biāo)系內(nèi)三點(diǎn)、在一條直線(xiàn)上,,,,且,其中為坐標(biāo)原點(diǎn).
(1)求實(shí)數(shù),的值;
(2)設(shè)的重心為,若存在實(shí)數(shù),使,試求的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知的三內(nèi)角、所對(duì)的邊分別是,,,向量與向量的夾角的余弦值為
(Ⅰ)求角的大。
(Ⅱ)若,求的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,點(diǎn)B是軸上的動(dòng)點(diǎn),過(guò)B作AB的垂線(xiàn)軸于點(diǎn)Q,若,.

(1)求點(diǎn)P的軌跡方程;
(2)是否存在定直線(xiàn),以PM為直徑的圓與直線(xiàn)的相交弦長(zhǎng)為定值,若存在,求出定直線(xiàn)方程;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量,設(shè)函數(shù)
(1)求在區(qū)間上的零點(diǎn);
(2)在中,角的對(duì)邊分別是,且滿(mǎn)足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖所示的三角形數(shù)陣叫“萊布尼茲調(diào)和三角形”,它們是由整數(shù)的倒數(shù)組成的,第行有個(gè)數(shù)且兩端的數(shù)均為,每個(gè)數(shù)是它下一行左右相鄰兩數(shù)的和,如,,,…,則第10行第4個(gè)數(shù)(從左往右數(shù))為(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

A,B分別是單位圓與x軸、y軸正半軸的交點(diǎn),點(diǎn)P在單位圓上,∠AOP=θ(0<θ<π),C點(diǎn)坐標(biāo)為(-2,0),平行四邊形OAQP的面積為S.
(1)求·+S的最大值;
(2)若CB∥OP,求sin的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知數(shù)列{an}滿(mǎn)足a1=1,an+1,則其前6項(xiàng)之和是(  )

A.16B.20C.33D.120

查看答案和解析>>

同步練習(xí)冊(cè)答案