18.在明朝程大位《算法統(tǒng)宗》中有這樣的一首歌謠:“遠(yuǎn)看巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈”.這首古詩(shī)描述的這個(gè)寶塔其古稱浮屠,本題一共有7層.每層懸掛的紅燈數(shù)是上一層的2倍,共有381盞燈,問(wèn)塔頂有幾盞燈?你算出頂層有3盞燈.

分析 設(shè)第一層有a盞燈,則由題意知第一層至第七層的燈的盞數(shù)構(gòu)成一個(gè)以a為首項(xiàng),以$\frac{1}{2}$為公比的等比數(shù)列,由此能求出結(jié)果.

解答 解:設(shè)第一層有a盞燈,
則由題意知第一層至第七層的燈的盞數(shù)構(gòu)成一個(gè)以a為首項(xiàng),以$\frac{1}{2}$為公比的等比數(shù)列,
∴$\frac{a(1-\frac{1}{{2}^{7}})}{1-\frac{1}{2}}$=381,
解得a=192,
∴頂層有${a}_{7}=192×\frac{1}{{2}^{6}}$=3盞燈.
故答案為:3.

點(diǎn)評(píng) 本題考查頂層有幾盞燈的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.廣場(chǎng)舞是現(xiàn)代城市群眾文化、娛樂(lè)發(fā)展的產(chǎn)物,其兼具文化性和社會(huì)性,是精神文明建設(shè)成果的一個(gè)重要指標(biāo)和象征.2015年某高校社會(huì)實(shí)踐小組對(duì)某小區(qū)廣場(chǎng)舞的開(kāi)展?fàn)顩r進(jìn)行了年齡的調(diào)查,隨機(jī)抽取了40名廣場(chǎng)舞者進(jìn)行調(diào)查,將他們年齡分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖的頻率分布直方圖.問(wèn):
(1)估計(jì)在40名廣場(chǎng)舞者中年齡分布在[40,70)的人數(shù);
(2)求40名廣場(chǎng)舞者年齡的眾數(shù)和中位數(shù)的估計(jì)值;
(3)若從年齡在[20,40)中的廣場(chǎng)舞者中任取2名,求這兩名廣場(chǎng)舞者中年齡在[30,40)恰有1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1,求過(guò)它的焦點(diǎn)且垂直于實(shí)軸的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若直線y=ax是曲線y=2lnx+1的一條切線,則實(shí)數(shù)a=( 。
A.e-${\;}^{\frac{1}{2}}$B.2e-${\;}^{\frac{1}{2}}$C.e${\;}^{\frac{1}{2}}$D.2e${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.若兩條異面直線中的一條在平面α內(nèi),討論另一條直線與平面α的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在平行四邊形ABCD中,|$\overrightarrow{AB}+\overrightarrow{AD}$|=|$\overrightarrow{AB}-\overrightarrow{AD}$|,則平行四邊形ABCD的形狀是矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知數(shù)列{an}的前n項(xiàng)和為Sn,則“{an}為常數(shù)列”是“?n∈N*,Sn=nan”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知直線l經(jīng)過(guò)點(diǎn)P(0,1),且平行于過(guò)兩點(diǎn)(1,-2)、(2,3)的直線,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知正數(shù)x,y滿足x+y=1,則$\frac{1}{x}$+$\frac{4}{y}$的最小值是9.

查看答案和解析>>

同步練習(xí)冊(cè)答案