13.過點A(3,-1)的直線被圓C:x2+y2-4x+6y+4=0所截得的弦中,最短弦所在的直線的方程是( 。
A.x+2y-1=0B.2x+y-5=0C.2x-y-7=0D.x-2y-5=0

分析 求出kAC=$\frac{-3+1}{2-3}$=2,過點A(3,-1)的直線被圓C:x2+y2-4x+6y+4=0所截得的弦中,最短弦所在的直線的方程的斜率為-$\frac{1}{2}$,由此能求出最短弦所在的直線的方程.

解答 解:圓C:x2+y2-4x+6y+4=0的圓心C(2,-3),半徑r=$\frac{1}{2}\sqrt{16+36-16}$=3,
∵A(3,-1),∴|AC|=$\sqrt{(3-2)^{2}+(-1+3)^{2}}$=$\sqrt{5}$<3,
∴點A在圓C內(nèi),
∵kAC=$\frac{-3+1}{2-3}$=2,
∴過點A(3,-1)的直線被圓C:x2+y2-4x+6y+4=0所截得的弦中,
最短弦所在的直線的方程是:y+1=-$\frac{1}{2}$(x-3),即x+2y-1=0.
故選:A.

點評 本題考查直線方程的求法,考查圓、直線方程、兩點間距離公式等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.自地面垂直向上發(fā)射火箭,火箭的質(zhì)量為m,試計算將火箭發(fā)射到距地面的高度為h時所做的功.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{m}$=1的一個焦點在直線x+y=5上,則雙曲線的漸近線方程為( 。
A.y=±$\frac{3}{4}$xB.y=±$\frac{4}{3}$xC.y=±$\frac{2\sqrt{2}}{3}$xD.y=±$\frac{3\sqrt{2}}{4}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知點P(-1,m)在直線l1:ax+y+2a=0上,且圓C:x2+y2-8y+12=0關(guān)于直線l1對稱.
(1)求a、m的值;
(2)若過點P的直線l2與圓C相切,求直線l2的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知a,b,x,y∈R,證明:(a2+b2)(x2+y2)≥(ax+by)2,并利用上述結(jié)論求(sin2x+cos2x)($\frac{1}{si{n}^{2}x}$+$\frac{4}{co{s}^{2}x}$)的最小值(其中x∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$y={log_2}({\frac{1}{4}{x^2}-x+a})$在x∈[1,2]上恒為負(fù)值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若圓(x-1)2+(y+1)2=r2上有且只有兩個點到直線x-y+1=0的距離等于$\frac{{\sqrt{2}}}{2}$,則半徑r的取值范圍是( 。
A.$(\sqrt{2},2\sqrt{2}]$B.$(\sqrt{2},2\sqrt{2})$C.$[\sqrt{2},2\sqrt{2})$D.$[\sqrt{2},2\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)a,b∈R,則“$log_2^a>log_2^b$”是“2a-b>1”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)x∈R,則“|x+1|<1”是“x2+x-2<0”的( 。l件.
A.充分而不必要B.必要而不充分
C.充要D.既不充分也不必要

查看答案和解析>>

同步練習(xí)冊答案