4.已知拋物線M:y2=4x,圓N:(x-1)2+y2=r2(其中r為常數(shù),且r>0),過(guò)點(diǎn)(1,0)的直線l交圓N于C、D兩點(diǎn),交拋物線M于A、B兩點(diǎn),若使|AC|=|BD|成立的直線有3條,則r的取值范圍是( 。
A.(0,1)B.(1,2)C.(2,+∞)D.($\frac{3}{2}$,+∞)

分析 討論直線l與x軸垂直的情況,設(shè)直線方程為x=my+1(m≠0),分別與拋物線方程和圓的方程聯(lián)立方程組,根據(jù)|AC|=|BD|列方程,得出r關(guān)于m的表達(dá)式,從而得出r的范圍.

解答 解:①當(dāng)l⊥x軸時(shí),由對(duì)稱(chēng)性可知|AC|=|BD|,符合題意;
②當(dāng)l不與x軸垂直時(shí),設(shè)直線l:x=my+1,
把x=my+1代入拋物線方程y2=4x得:y2-4my-4=0,△=16(m2+1)>0,
把x=my+1代入圓的方程(x-1)2+y2=r2得:y2=$\frac{{r}^{2}}{{m}^{2}+1}$,
設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),
∵|AC|=|BD|,
∴y1-y3=y2-y4,即y1-y2=y3-y4
∴4$\sqrt{{m}^{2}+1}$=$\frac{2r}{\sqrt{{m}^{2}+1}}$,
∴r=2(m2+1)>2,
故選C.

點(diǎn)評(píng) 本題考查直線與圓錐曲線的位置關(guān)系,考查等價(jià)轉(zhuǎn)化思想與分類(lèi)討論思想,求得r=2(m2+1)是關(guān)鍵,考查綜合運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知點(diǎn)P是函數(shù)$f(x)=cosx(0≤x≤\frac{π}{3})$圖象上的一點(diǎn),則曲線y=f(x)在點(diǎn)P處的切線斜率取得最大值時(shí)切線的方程為y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知⊙M:x2+y2=1,⊙N:x2+y2-6x+8y-11=0,則兩圓的公切線的條數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若集合A={x||2x-1|<3},$B=\left\{{\left.x\right|\frac{2x+1}{x-3}<0}\right\}$,則A∩∁RB=( 。
A.$\left\{{\left.x\right|-1<x<\frac{1}{2}或2<x<3}\right\}$B.$(-\frac{1}{2},2)$
C.$\left\{{\left.x\right|-1<x<-\frac{1}{2}}\right\}$D.$(-1,-\frac{1}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.命題p:“?x0∈R,x02-x0>0”,則¬p是(  )
A.?x0∈R,x02-x0<0B.?x0∈R,x02-x0≤0C.?x∈R,x2-x<0D.?x∈R,x2-x≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若直線l1:(3+a)x+4y=5-3a和直線l2:2x+(5+a)y=0平行,則a=-1,-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知各項(xiàng)均為正數(shù)的數(shù)列{an}首項(xiàng)為2,且滿足$a_n^2-{a_n}{a_{n-1}}-n(n+1)a_{n+1}^2=0$,公差不為零的等差數(shù)列{bn}的前n項(xiàng)和為Sn,S5=15,且b1,b3,b9成等比數(shù)列,設(shè)${c_n}=\frac{b_n}{a_n}$
(1)求數(shù)列{an}的通項(xiàng)公式
(2)求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)平面上,O為原點(diǎn),M為動(dòng)點(diǎn),$|\overrightarrow{OM}|=\sqrt{5},\overrightarrow{ON}=\frac{{2\sqrt{5}}}{5}\overrightarrow{OM}$.過(guò)點(diǎn)M作MM1⊥y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,$\overrightarrow{OT}=\overrightarrow{{M_1}M}+\overrightarrow{{N_1}N}$.記點(diǎn)T的軌跡為曲線C,點(diǎn)A(5,0)、B(1,0),過(guò)點(diǎn)A作直線l交曲線C于兩個(gè)不同的點(diǎn)P、Q(點(diǎn)Q在A與P之間).
(1)求曲線C的方程;  
(2)問(wèn)是否存在直線l,使得|BP|=|BQ|;若存在,求出直線l方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知數(shù)列{an}是等比數(shù)列,a1=1,a4=8,則公比q等于( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案