1.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}$(t為參數(shù)),曲線C的極坐標(biāo)方程是ρ=$\frac{sinθ}{{{{cos}^2}θ}}$,以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(-1,0),直線l與曲線C交于A、B兩點(diǎn).
(Ⅰ)寫出直線l的極坐標(biāo)方程與曲線C的普通方程;
(Ⅱ)求線段MA、MB長(zhǎng)度之積MA•MB的值.

分析 (Ⅰ)先求出直線l的普通方程,再求出直線l的極坐標(biāo)方程,曲線C的極坐標(biāo)方程是ρ2cos2θ=ρsinθ,由此能求出曲線C普通方程.
(Ⅱ)將$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$代入y=x2,能求出|MA|•|MB|的值

解答 解:(Ⅰ)直線l的極坐標(biāo)方程為$\sqrt{2}ρcos(θ+\frac{π}{4})=-1$,曲線C的普通方程為y=x2;
(Ⅱ)(方法一)將$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$代入y=x2,
得${t^2}-3\sqrt{2}t+2=0$,MA•MB=|t1t2|=2.
(方法二)顯然直線l:x-y+1=0,聯(lián)立得$\left\{\begin{array}{l}x-y+1=0\\ y={x^2}\end{array}\right.$,
消去y得x2-x-1=0,所以${x_1}=\frac{1}{2}+\frac{{\sqrt{5}}}{2}$,${x_2}=\frac{1}{2}-\frac{{\sqrt{5}}}{2}$,
不妨設(shè)$A(\frac{1}{2}-\frac{{\sqrt{5}}}{2},\frac{3}{2}-\frac{{\sqrt{5}}}{2})$,$B(\frac{1}{2}+\frac{{\sqrt{5}}}{2},\frac{3}{2}+\frac{{\sqrt{5}}}{2})$
則$MA=\sqrt{2}(\frac{3}{2}-\frac{{\sqrt{5}}}{2})$,$MB=\sqrt{2}(\frac{3}{2}+\frac{{\sqrt{5}}}{2})$,
所以$MA•MB=\sqrt{2}(\frac{3}{2}-\frac{{\sqrt{5}}}{2})•\sqrt{2}(\frac{3}{2}+\frac{{\sqrt{5}}}{2})=2$.

點(diǎn)評(píng) 本題考查直線l的極坐標(biāo)方程與曲線C普通方程的求法|,考查|MA|•|MB|的值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意極坐標(biāo)和直角坐標(biāo)互化公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)f(x)=2sin(ωx+φ)-m,恒有f(x+$\frac{π}{2}$)=f(-x)成立,且f($\frac{π}{4}$)=-2,則實(shí)數(shù)m的值為( 。
A.±2B.±4C.-4或0D.0或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某工廠生產(chǎn)某種產(chǎn)品的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)有如表幾組樣本數(shù)據(jù):
 x 3 4 5 6
 y 2.5 3 m 4.5
據(jù)相關(guān)性檢驗(yàn),這組樣本數(shù)據(jù)具有線性相關(guān)關(guān)系,求得其回歸方程是$\stackrel{∧}{y}$=0.7x+0.35,則實(shí)數(shù)m的值為  ( 。
A.3.5B.3.85C.4D.4.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x}-1,x<1\\-\frac{1}{2},x=1\\ 1+{log_{\frac{1}{2}}}x,x>1\end{array}\right.$,g(x)=f(x)-k,k為常數(shù),給出下列四種說法:
①f(x)的值域是(-∞,1];
 ②當(dāng)$k=-\frac{1}{2}$時(shí),g(x)的所有零點(diǎn)之和等于$2\sqrt{2}$;
③當(dāng)k≤-1時(shí),g(x)有且僅有一個(gè)零點(diǎn);  
④f(x+1)是偶函數(shù).
其中正確的是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,圓O的兩條弦AB與CD相交于點(diǎn)E,圓O的切線CF交AB的延長(zhǎng)線于F點(diǎn),且AE:EB=3:2,EF=CF,CE=$\sqrt{2}$,ED=3$\sqrt{2}$,則CF的長(zhǎng)為( 。
A.6B.5C.2$\sqrt{6}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2,x>0}\\{-3|x+a|+a,x<0}\end{array}\right.$的圖象上恰有三對(duì)點(diǎn)關(guān)于原點(diǎn)成中心對(duì)稱,則a的取值范圍是( 。
A.(-$\frac{17}{8}$,-2)B.(-$\frac{17}{8}$,-2]C.[1,$\frac{17}{16}$)D.(1,$\frac{17}{16}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求方程6sin2x-4sin2x=-1,x∈[0,π]的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已數(shù)列的前n項(xiàng)和為Sn,且滿Sn-1-Sn=2Sn•Sn-1(n∈N*,n≥2),a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{S}_{n}}$,Tn=$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$,若Tn<2m-1對(duì)任意的正整數(shù)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$\overrightarrow{m}$=(sinx,-1),$\overrightarrow{n}$=(sinx+$\sqrt{3}$cosx,-$\frac{3}{2}$),g(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)當(dāng)x∈[0,π]時(shí),求函數(shù)g(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)g(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,再橫坐標(biāo)伸長(zhǎng)為原來的2倍,縱坐標(biāo)伸長(zhǎng)為原來的4倍,向下平移兩個(gè)單位后,得到f(x)的圖象,求f(x)的最大值,及取得最大值時(shí)x的集合;
(3)若a,b,c是△ABC的內(nèi)角A,B,C的對(duì)邊,對(duì)定義域內(nèi)任意x,有f(x)≤f(A),若a=$\sqrt{3}$.求$\overrightarrow{AB}$•$\overrightarrow{AC}$的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案