16.如圖,圓O的兩條弦AB與CD相交于點E,圓O的切線CF交AB的延長線于F點,且AE:EB=3:2,EF=CF,CE=$\sqrt{2}$,ED=3$\sqrt{2}$,則CF的長為( 。
A.6B.5C.2$\sqrt{6}$D.2$\sqrt{5}$

分析 利用相交弦定理可得:AE,EB,再利用切割線定理即可得出.

解答 解:設(shè)AE=3x,則EB=2x,
∵AE•EB=CE•ED.
∴3x•2x=$\sqrt{2}×3\sqrt{2}$,
解得x=1.
∴AE=3,BE=2.
設(shè)FB=y,則FE=y+2=CF,
由切割線定理可得:CF2=FB•FA,
∴(y+2)2=y(y+5),
解得y=4,
∴CF=6.
故選:A.

點評 本題考查了相交弦定理、切線長定理、圓的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)m、n是不同的直線,α、β、γ是不同的平面,有以下四個命題:
①若α∥β,α∥γ,則β∥γ;
②若α⊥β,m∥α,則m⊥β;           
③若m⊥α,m∥β,則α⊥β;       
④若m∥n,m∥α,則n∥α.
其中真命題的序號是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖在三棱錐P-ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點,已知AD=PD,PA=6,BC=8,DF=5,求證:
(1)直線PA∥平面DEF;
(2)平面DEF⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四邊形ABCD滿足AB⊥AD,BC∥AD且BC=4,點M為PC的中點,點E為BC邊上的點,且$\frac{BE}{EC}$=λ.
(Ⅰ)求證:平面ADM⊥平面PBC;
(Ⅱ)是否存在實數(shù)λ,使得二面角P-DE-B的余弦值為$\frac{\sqrt{2}}{2}$?若存在,求出實數(shù)λ的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱椎P-ABC中,PA=PB=PC=AC=4,AB=BC=2$\sqrt{2}$.
(Ⅰ)求證:平面ABC⊥平面APC.
(Ⅱ)若動點M在底面三角形ABC內(nèi)(包括邊界)運動,使二面角M-PA-C的余弦值為$\frac{3\sqrt{93}}{31}$,求此時∠MAB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}$(t為參數(shù)),曲線C的極坐標(biāo)方程是ρ=$\frac{sinθ}{{{{cos}^2}θ}}$,以極點為原點,極軸為x軸正方向建立直角坐標(biāo)系,點M(-1,0),直線l與曲線C交于A、B兩點.
(Ⅰ)寫出直線l的極坐標(biāo)方程與曲線C的普通方程;
(Ⅱ)求線段MA、MB長度之積MA•MB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知四邊形ABCD為梯形,AB∥DC,對角線AC,BD交于點O,CE⊥平面ABCD,CE=AD=DC=BC=1,∠ABC=60°,F(xiàn)為線段BE上的點,$\overrightarrow{EF}$=$\frac{1}{3}$$\overrightarrow{EB}$.
(I)證明:OF∥平面CED;
(Ⅱ)求平面ADF與平面BCE所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某個幾何體的三視圖,則該幾何體的體積為( 。
A.36πB.45πC.32πD.144π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=$\left\{\begin{array}{l}{1,x∈[0,1]}\\{x-3,x∉[0,1]}\end{array}\right.$,若f(f(x))=1成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案