分析 (Ⅰ)求出導(dǎo)函數(shù),利用極值點(diǎn)求出m.然后(1)當(dāng)m=1時(shí),求出函數(shù)的值域;(2)當(dāng)m=7時(shí),求解函數(shù)f(x)的值域.
(Ⅱ)g(x)=ex+√x−2x,求出g′(x)=ex+12√x−2,設(shè)h(x)=ex-(1+x),利用導(dǎo)函數(shù)求解函數(shù)的最值,推出結(jié)果.
解答 (本題滿分15分)
解(Ⅰ):令f′(x)=4(2x−m)(2−x)+(2x−m)2(2−x)2=0,由題設(shè),x=12滿足方程,由此解得:m=1或m=7.
(1)當(dāng)m=1時(shí),分析可知:f(x)在x∈(0,12)上是減函數(shù);在x∈[12,1]上是增函數(shù);
由此可求得,故 當(dāng)x∈[0,1]時(shí),f(x)的值域?yàn)閇0,1].
(2)當(dāng)m=7時(shí),同樣可得:f(x)在x∈(0,12)上是減函數(shù);在x∈[12,1]上是增函數(shù),當(dāng)x∈[0,1]時(shí),f(x)的值域?yàn)閇24,25].
解(Ⅱ)g(x)=ex+√x−2x,所以g′(x)=ex+12√x−2,因?yàn)閤∈(0,1],所以1+x≥2√x,所以12√x≥11+x(1),設(shè)h(x)=ex-(1+x),則h'(x)=ex-1,當(dāng)x∈(0,1]時(shí),h'(x)=ex-1>0
即h(x)=ex-(1+x)為增函數(shù),故當(dāng)x∈[0,1]有h(x)>h(0),即ex-(1+x)>0,
所以ex>(1+x)(2),由(1)(2)得,當(dāng)x∈(0,1]時(shí),g′(x)=ex+12√x−2≥(1+x)+11+x−2≥0.
所以g(x)=ex+√x−2x在x∈(0,1]上為增函數(shù),又因?yàn)間(x)在x=0處與x∈(0,1]圖象相連,故對于x∈(0,1]有g(shù)(x)>g(0),即g(x)=ex+√x−2x>1;
由(Ⅰ)知:(1)當(dāng)m=1時(shí):f(x)=(2x−m)22−x在x∈(0,1]上的值域?yàn)閇0,1],而g(x)=ex+√x−2x>1;所以f(x)<g(x),故函數(shù)y=f(x)與y=g(x)的圖象在x∈(0,1]上沒有公共點(diǎn).
(2)當(dāng)m=7時(shí),f(x)=(2x−m)22−x在x∈(0,1]上的值域?yàn)閇24,25],由于x∈(0,1],所以g(x)=ex+√x−2x<ex+√x+2x≤e+1+2<24,所以f(x)>g(x),故函數(shù)y=f(x)與y=g(x)的圖象在x∈(0,1]上也沒有公共點(diǎn).
綜上所述,函數(shù)y=f(x)與y=g(x)的圖象在x∈(0,1]上沒有公共點(diǎn).
點(diǎn)評 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的極值以及函數(shù)的單調(diào)性的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2√3+4 | B. | 4√3 | C. | 8 | D. | 2√3+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | →e1,2→e2 | B. | →e1,→e1−→e2 | ||
C. | -→e1+→e2,→e1−→e2 | D. | →e1+→e2,→e1−→e2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若θ=90°,則直線PB與平面BCD所成角大小為45° | |
B. | 若直線PB與平面BCD所成角大小為45°,則θ=90° | |
C. | 若θ=60°,則直線BD與PC所成角大小為90° | |
D. | 若直線BD與PC所成角大小為90°,則θ=60° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3√2 | B. | 3√3 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com