若經(jīng)過(guò)點(diǎn)的直線與圓相切,則此直線在軸上的截距是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2017屆廣西南寧二中等校高三8月聯(lián)考數(shù)學(xué)(理)試卷(解析版) 題型:解答題

學(xué)校為測(cè)評(píng)班級(jí)學(xué)生對(duì)任課教師的滿意度,采用“100分制”打分的方式來(lái)計(jì)分,規(guī)定滿意度不低于98分,則評(píng)價(jià)該教師為“優(yōu)秀”,現(xiàn)從某班學(xué)生中隨機(jī)抽取10名,以下莖葉圖記錄了他們對(duì)某教師的滿意度分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉);

(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);

(2)求從這10人中隨機(jī)選取3人,至多有1人評(píng)價(jià)該教師是“優(yōu)秀”的概率;

(3)以這10人的樣本數(shù)據(jù)來(lái)估計(jì)整個(gè)班級(jí)的總體數(shù)據(jù),若從該班任選3人,記表示抽到評(píng)價(jià)該教師為“優(yōu)秀”的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年新疆庫(kù)爾勒市高二上學(xué)期分班考試數(shù)學(xué)(理)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax2+bx+1(a?0)對(duì)于任意x?R都有f(1+x)=f(1-x),且函數(shù)y=f(x)+2x為偶函數(shù);函數(shù)g(x)=1-2x.

(1)求函數(shù)f(x)的表達(dá)式

(2)求證:方程f(x)+g(x)=0在區(qū)間[0, 1]上有唯一實(shí)數(shù)根;

(3)若有f(m)=g(n),求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年新疆庫(kù)爾勒市高二上學(xué)期分班考試數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

若函數(shù)是函數(shù)的反函數(shù),則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河北省高二8月月考數(shù)學(xué)試卷(解析版) 題型:解答題

(1)求以為直徑兩端點(diǎn)的圓的方程

(2)點(diǎn)在直線上,求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河北省高二8月月考數(shù)學(xué)試卷(解析版) 題型:選擇題

給定下列四個(gè)命題:

①若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,則這兩個(gè)平面相互平行;②若一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個(gè)平面垂直,則一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直.其中,為真命題的是( )

A.①和② B.②和③ C.③和④ D.②和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=xlnx+ax(a∈R).
(Ⅰ)若a=-2,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意x∈(1,+∞),f(x)>k(x-1)+ax-x恒成立,求正整數(shù)k的值.(參考數(shù)據(jù):ln2=0.6931,ln3=1.0986)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某校組織學(xué)生參加數(shù)學(xué)競(jìng)賽,共有15名學(xué)生獲獎(jiǎng),其中10名男生和5名女生,其成績(jī)?nèi)缜o葉圖所示(單位:分).規(guī)定:成績(jī)?cè)?0分以上者為一等獎(jiǎng),80分以下者為二等獎(jiǎng),已知這5名女生的平均成績(jī)?yōu)?3.
(I)求男生成績(jī)的中位數(shù)及m的值;
(Ⅱ)如果用分層抽樣的方法,從一等獎(jiǎng)和二等獎(jiǎng)學(xué)生中共選取5人,再?gòu)倪@5人中選取2人,求至少有1人是一等獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如果實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y-2≥0}\\{2x-y-4≤0}\end{array}\right.$,則z=(x-1)2+(y+1)2的最小值為$\frac{9}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案