分析 由條件:“f(x)•f(x+2)=13”得出函數(shù)f(x)是周期為4的周期函數(shù),從而利用f(1)的值求出f(2015)的值.
解答 解:∵f(x)•f(x+2)=13
∴f(x+2)•f(x+4)=13,
∴f(x+4)=f(x),
∴f(x)是一個周期為4的周期函數(shù),
∴f(2015)=f(4×503+3)=f(3)=f(1+2)=$\frac{13}{f(1)}$=$\frac{13}{2}$,
故答案為:$\frac{13}{2}$.
點評 本題主要考查函數(shù)值的計算,考查分析問題和解決問題的能力,利用條件判斷函數(shù)的周期性是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(-1)<f(3) | B. | f (0)>f(3) | C. | f (-1)=f (-3) | D. | f(2)<f(3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,2) | B. | (-∞,2) | C. | (-∞,-2)∪(2,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$) | B. | |$\overrightarrow{a}$-$\overrightarrow$|2=|$\overrightarrow{a}$|2-2|$\overrightarrow{a}$||$\overrightarrow$|+|$\overrightarrow$|2 | ||
C. | 若|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|,則$\overrightarrow{a}$與$\overrightarrow$的夾角為60° | D. | 若|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$與$\overrightarrow$的夾角為60° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 20 | C. | 25 | D. | 39 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{4}$ | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com