分析 求出滿足$sinx>\frac{1}{2}$的區(qū)間寬度,代入幾何概型概率計(jì)算公式,可得答案.
解答 解:∵x∈[0,π],
∴$sinx>\frac{1}{2}$時(shí),x∈[$\frac{π}{6}$,$\frac{5π}{6}$],
∴使$sinx>\frac{1}{2}$的概率P=$\frac{\frac{5π}{6}-\frac{π}{6}}{π-0}$=$\frac{2}{3}$,
故答案為:$\frac{2}{3}$.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是幾何概型,計(jì)算出滿足$sinx>\frac{1}{2}$的區(qū)間寬度,是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 最大值為$\frac{8}{{e}^{2}}$ | B. | 最大值為$\frac{4}{{e}^{2}}$ | C. | 最小值為$\frac{8}{{e}^{2}}$ | D. | 最小值為$\frac{4}{{e}^{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4+$\sqrt{6}$ | B. | 6+$\sqrt{6}$ | C. | 2+2$\sqrt{2}$+$\sqrt{6}$ | D. | 2+2$\sqrt{3}$+$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{4}{5}$,1) | B. | ($\frac{4}{5}$,+∞) | C. | (0,$\frac{4}{5}$)∪(1,+∞) | D. | (0,$\frac{4}{5}$)∪($\frac{4}{5}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4或-4或5 | B. | 4或-4 | C. | -4或5 | D. | 4或5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(0,\frac{1}{2})$ | B. | $[0,\frac{1}{2})$ | C. | $(0,\frac{1}{2}]$ | D. | $[\frac{1}{2},1)$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com