4.已知函數(shù)φ(x)=x2+ax+b,f(x)=$\frac{φ(x)-ax}{x}$.
(1)當f(1)=f(4),函數(shù)F(x)=f(x)-k有且僅有一個零點x0,且x0>0時,求k的值;
(2)求證:存在x0∈[-1,1],使|φ(x0)|≥|a|.

分析 (1)利用f(1)=f(4),求出b,結(jié)合基本不等式,利用函數(shù)F(x)=f(x)-k有且僅有一個零點x0,且x0>0時,求k的值;
(2)由題意,a=$\frac{1}{2}$[φ(1)-φ(-1)],即可證明存在x0∈[-1,1],使|φ(x0)|≥|a|.

解答 解:(1)f(x)=$\frac{φ(x)-ax}{x}$=$\frac{{x}^{2}+b}{x}$,
∵f(1)=f(4),
∴$\frac{1+b}{1}$=$\frac{16+b}{4}$,
解得,b=4;
故f(x)=$\frac{{x}^{2}+4}{x}$,
當x>0時,$\frac{{x}^{2}+4}{x}$≥4;
∵函數(shù)F(x)=f(x)-k有且僅有一個零點x0,且x0>0,
∴k=4;
(2)證明:由題意,a=$\frac{1}{2}$[φ(1)-φ(-1)],
∴x0∈[-1,1],|φ(x0)|≥|$\frac{1}{2}$[φ(1)+φ(-1)]|≥|$\frac{1}{2}$[φ(1)-φ(-1)]|
∴存在x0∈[-1,1],使|φ(x0)|≥|a|.

點評 本題考查函數(shù)值的計算,考查基本不等式的運用,考查不等式的證明,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.解下列不等式
(1)$\frac{3x}{x+2}≤3$
(2)x2-2x-15<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在等差數(shù)列{an}中,若a4+a9+a14=36,則2a10-a11=( 。
A.6B.12C.24D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=2ax-1+3,(a>0且a≠1),則其圖象一定過定點(1,5).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設O為△ABC的外心,且$\overrightarrow{OA}+\overrightarrow{OB}+\sqrt{3}\overrightarrow{OC}=\overrightarrow 0$,則△ABC的內(nèi)角C=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.己知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是關于x的方程f(x)-g(x)=0的一個解,求t的值;
(2)當0<a<1且t=-1時,解不等式f(x)≤g(x);
(3)若函數(shù)F(x)=af(x)+tx2-2t+1在區(qū)間(-1,2]上有零點,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=log2x+2x-1.
(1)用定義證明函數(shù)f(x)在(0,+∞)上是增函數(shù).
(2)判斷函數(shù)f(x)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.命題p:“x>0,y>0“,命題q:“xy>0“,則命題p是命題q的(  )
A.充要條件B.必要而不充分條件
C.充分而不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,ABCD是正方形,SA⊥平面ABCD,BK⊥SC于點K,連接DK,求證:
(1)平面SBC⊥平面KBD;
(2)平面SBC不垂直于平面SDC.

查看答案和解析>>

同步練習冊答案