【題目】已知圓與圓:關(guān)于直線對稱,且點在圓上.
(1)判斷圓與圓的位置關(guān)系;
(2)設(shè)為圓上任意一點,,,三點不共線,為的平分線,且交于. 求證:與的面積之比為定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)=1時,求函數(shù)在區(qū)間[-2,3]上的值域;
(2)函數(shù)在上具有單調(diào)性,求實數(shù)的取值范圍;
(3)求函數(shù)在上的最小值的解析式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù),.
(1)當(dāng)時,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
(2)①當(dāng)時,判斷函數(shù)的奇偶性并證明,并判斷是否有上界,并說明理由;
②若,函數(shù)在上的上界是,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:“對于函數(shù)f(x),若存在x0,使f(x0)=x0成立,則稱x0為函數(shù)f(x)的不動點。”已知f(x)=x2+bx+c.
(1)若f(x)有兩個不動點為-3,2,求函數(shù)f(x)的零點.
(2)當(dāng)c=b2時,函數(shù)f(x)沒有不動點,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 |
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生期中考試數(shù)學(xué)成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學(xué)生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)。
(1)若曲線在點處的切線與直線垂直,求的單調(diào)遞減區(qū)間和極小值(其中為自然對數(shù)的底數(shù));
(2)若對任意恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人,女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動,男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個的列聯(lián)表;
(2)是否有97.5%的把握認(rèn)為性別與休閑方式有關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】算法的三種基本結(jié)構(gòu)是( )
A. 順序結(jié)構(gòu)、模塊結(jié)構(gòu)、條件結(jié)構(gòu) B. 順序結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、模塊結(jié)構(gòu)
C. 順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu) D. 模塊結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學(xué)季內(nèi),每售出盒該產(chǎn)品獲利潤元;未售出的產(chǎn)品,每盒虧損元.根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖,如圖所示,該同學(xué)為這個開學(xué)季購進了盒該產(chǎn)品,以(單位:盒, )表示這個開學(xué)季內(nèi)的市場需求量,(單位:元)表示這個開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤.
(1)根據(jù)直方圖估計這個開學(xué)季內(nèi)市場需求量的中位數(shù);
(2)將表示為的函數(shù);
(3)根據(jù)直方圖估計利潤不少于元的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com