4.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點(diǎn)分別為F1、F2,P為橢圓上一點(diǎn),連接PF1交y軸于點(diǎn)Q,若△PQF2為等邊三角形,則橢圓C的離心率為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

分析 由題意|F1F2|=2c,依題意,△PQF1為正三角形,推出PF2⊥x軸,即可求得此橢圓的離心率.

解答 解:如圖:橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點(diǎn)分別為F1、F2,P為橢圓上一點(diǎn),連接PF1交y軸于點(diǎn)Q,若△PQF2為等邊三角形,可得|QF1|=|QF2|,Q是PF1的中點(diǎn),
∴PF2⊥x軸,
可得|PF2|=$\frac{^{2}}{a}$,3$\frac{^{2}}{a}$=2a,即3(a2-c2)=2a2
解得$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$.
故選:C.

點(diǎn)評 本題考查橢圓的簡單性質(zhì),考查橢圓定義的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知正項數(shù)列{an}的前n項和為Sn,且a1=1,an+12=Sn+1+Sn
(1)求{an}的通項公式;
(2)設(shè)bn=a2n-1•2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$為標(biāo)準(zhǔn)正交基,$\overrightarrow{a}$=$\overrightarrow{i}$+2$\overrightarrow{j}$+3$\overrightarrow{k}$,則$\overrightarrow{a}$在$\overrightarrow{i}$方向上的投影為(  )
A.1B.-1C.$\sqrt{14}$D.-$\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知直線x-y+3=0與圓O:x2+y2=r2(r>0)相交于M,N兩點(diǎn),若$\overrightarrow{OM}•\overrightarrow{ON}=3$,則圓的半徑r=$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某三棱椎的三視圖如圖所示,該三棱錐的四個面的面積中,最大的是4$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=x|x-2|,則不等式$f({\sqrt{2}-x})<f(1)$的解集為(-1,$\sqrt{2}$-1)∪($\sqrt{2}$-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|x-2|+|x-10|,且滿足f(x)<8a(a∈R)的解集不是空集,
(1)求實(shí)數(shù)a的取值范圍;
(2)求a+$\frac{4}{{a}^{2}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知空間幾何體的三視圖如圖所示,則該幾何體的體積是$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.關(guān)于x的不等式(mx-1)(x-2)>0,若此不等式的解集為{x|$\frac{1}{m}$<x<2},則m的取值范圍是m<0.

查看答案和解析>>

同步練習(xí)冊答案