分析 作出f(x)=x|x-2|=$\left\{\begin{array}{l}{{x}^{2}-2x,x≥2}\\{-{x}^{2}+2x,x<2}\end{array}\right.$的圖象(如圖),數(shù)形結(jié)合可得.
解答 解:f(x)=x|x-2|=$\left\{\begin{array}{l}{{x}^{2}-2x,x≥2}\\{-{x}^{2}+2x,x<2}\end{array}\right.$,
作出函數(shù)的f(x)的圖象(如圖),
數(shù)形結(jié)合可得$\sqrt{2}$-x<1+$\sqrt{2}$且$\sqrt{2}$-x≠1,
解得x>-1且x≠$\sqrt{2}$-1
故答案為:(-1,$\sqrt{2}$-1)∪($\sqrt{2}$-1,+∞)
點評 本題考查不等式的解集,數(shù)形結(jié)合是解決問題的關(guān)鍵,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{6}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\frac{\sqrt{5}}{3}$ | C. | $\frac{\sqrt{13}}{2}$ | D. | $\frac{\sqrt{13}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com