(1)設,試比較與的大;
(2)是否存在常數(shù),使得對任意大于的自然數(shù)都成立?若存在,試求出的值并證明你的結(jié)論;若不存在,請說明理由。
(Ⅰ)(Ⅱ),利用放縮法證明
解析試題分析:(Ⅰ)設,則,
當時,,單調(diào)遞減;
當時,,單調(diào)遞增;
故函數(shù)有最小值,則恒成立 4 分
(Ⅱ)取進行驗算:
猜測:①,
②存在,使得恒成立。 6分
證明一:對,且,
有
又因,
故 8分
從而有成立,即
所以存在,使得恒成立 10分
證明二:
由(1)知:當時,,
設,,
則,所以,,,
當時,再由二項式定理得:
即對任意大于的自然數(shù)恒成立, 8分
從而有成立,即
所以存在,使得恒成立 10分
考點:本題考查了導數(shù)的運用及不等式的證明
點評:證明不等式的基本方法有比較法、綜合法、分析法。在證明時,關(guān)鍵在于分析待證不等式的結(jié)構(gòu)與特征,選用適當?shù)姆椒ㄍ瓿刹坏仁降淖C明
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù).
(1)若函數(shù)圖像上的點到直線距離的最小值為,求的值;
(2)關(guān)于的不等式的解集中的整數(shù)恰有3個,求實數(shù)的取值范圍;
(3)對于函數(shù)定義域上的任意實數(shù),若存在常數(shù),使得和都成立,則稱直線為函數(shù)的
“分界線”.設,試探究是否存在“分界線”?若存在,求出“分界線”的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)(1)當時,求的最大值;(2)令,(),其圖象上任意一點處切線的斜率≤恒成立,求實數(shù)的取值范圍;(3)當,,方程有唯一實數(shù)解,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)若存在函數(shù)使得恒成立,則稱是的一個“下界函數(shù)”.
(I) 如果函數(shù)為實數(shù)為的一個“下界函數(shù)”,求的取值范圍;
(Ⅱ)設函數(shù) 試問函數(shù)是否存在零點,若存在,求出零點個數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù);
(1)若在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,求實數(shù)的值;
(2)當時,求證:當時,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com