13.如圖是函數(shù)f(x)=x3+bx2+cx+d的大致圖象,則$x_1^{\;}+x_2^{\;}$=$\frac{2}{3}$.

分析 由圖象知f(x)=0的根為-1,0,2,求出函數(shù)解析式,x1和x2是函數(shù)f(x)的極值點(diǎn),故有x1和x2 是f′(x)=0的根,可結(jié)合根與系數(shù)求解.

解答 解:∵f(x)=x3+bx2+cx+d,由圖象知,-1+b-c+d=0,0+0+0+d=0,8+4b+2c+d=0,
∴d=0,b=-1,c=-2
∴f′(x)=3x2+2bx+c=3x2-2x-2.
由題意有x1和x2是函數(shù)f(x)的極值點(diǎn),故有x1和x2 是f′(x)=0的根,
∴x1+x2=$\frac{2}{3}$,
故答案為:$\frac{2}{3}$.

點(diǎn)評 本題考查一元二次方程根的分布,根與系數(shù)的關(guān)系,函數(shù)在某點(diǎn)取的極值的條件,以及求函數(shù)的導(dǎo)數(shù),屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=ax+sinx在[$\frac{π}{3}$,π]上遞增,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,-$\frac{1}{2}$]B.(-∞,-$\frac{1}{2}$)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)是定義在(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有2f(x)+xf′(x)>x2,則不等式(x+2016)2f(x+2016)-4f(-2)>0的解集為( 。
A.(-∞,-2016)B.(-∞,-2014)C.(-∞,-2018)D.(-2018,-2014)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若f(x)=-$\frac{1}{2}{x^2}$+blnx在(0,2)上是增函數(shù),則b的取值范圍是(  )
A.[4,+∞)B.(4,+∞)C.(-∞,4]D.(-∞,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知點(diǎn)P在曲線$y=\frac{4}{{{e^x}+1}}$上,其中e=2.71828…是自然對數(shù)的底數(shù),曲線在點(diǎn)P處的切線的傾斜角為$\frac{3π}{4}$,則點(diǎn)P的縱坐標(biāo)為( 。
A.$\frac{4e}{e+1}$B.$\frac{4}{e+1}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù) $f(x)=\frac{1}{3}{x^3}-{x^2}$.求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知x=1是$f(x)=x+\frac{x}+lnx$的一個極值點(diǎn).
(1)求b的值;
(2)設(shè)函數(shù)$h(x)=f(x)-\frac{2+a}{x}$,若函數(shù)h(x)在區(qū)間[1,2]內(nèi)單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知(x+2)(x-1)4=a0+a1(x+1)+…+a5(x+1)5,則a1+a3+a5=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在圓錐SO中,AB為底面圓O的直徑,點(diǎn)C為弧$\widehat{AB}$的中點(diǎn),SO=AB;
(1)證明:AB⊥平面SOC;
(2)若點(diǎn)D為母線SC的中點(diǎn),求AD與平面SOC所成角;(結(jié)果用反三角函數(shù)表示)

查看答案和解析>>

同步練習(xí)冊答案