3.已知函數(shù)f(x)=ax+sinx在[$\frac{π}{3}$,π]上遞增,則實數(shù)a的取值范圍為( 。
A.(-∞,-$\frac{1}{2}$]B.(-∞,-$\frac{1}{2}$)C.(1,+∞)D.[1,+∞)

分析 求函數(shù)的導(dǎo)數(shù),要使函數(shù)單調(diào)遞增,則f′(x)≥0成立,然后求出實數(shù)a的取值范圍.

解答 解:因為f(x)=sinx+ax,所以f′(x)=cosx+a.
要使函數(shù)在[$\frac{π}{3}$,π]上遞增單調(diào)遞增,則f′(x)≥0在[$\frac{π}{3}$,π]上成立.
即cosx+a≥0在[$\frac{π}{3}$,π]上恒成立.
所以a≥-cosx在[$\frac{π}{3}$,π]上成立,
因為在[$\frac{π}{3}$,π]上:-1≤cosx≤$\frac{1}{2}$,
所以a≥1.
故選:D.

點評 本題主要考查導(dǎo)數(shù)的基本運算以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,注意當函數(shù)單調(diào)遞增時,f'(x)≥0恒成立,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.化簡下列各式.
(1)$\sqrt{1+sinθ}$-$\sqrt{1-sinθ}$($\frac{3π}{2}$<θ<2π)
(2)$\frac{sin(2α+β)}{sinα}$-2cos(α+β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,AD為BC邊上的高,且AD=BC,b,c分別表示角B,C所對的邊長,則$\frac{c}$的最大值是( 。
A.2B.$\frac{\sqrt{5}+1}{2}$C.$\sqrt{5}$D.$\frac{\sqrt{5}+3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=xlnx
(1)求函數(shù)f(x)的最小值;
(2)設(shè)F(x)=x2-a[x+f′(x)]+2x,討論函數(shù)F(x)的單調(diào)性;
(3)在第二問的基礎(chǔ)上,若方程F(x)=m,(m∈R)有兩個不相等的實數(shù)根x1,x2,求證:x1+x2>a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=(x-a)ex(x∈R),函數(shù)g(x)=bx-lnx,其中a∈R,b<0.
(1)若函數(shù)g(x)在點(1,g(l))處的切線與直線x+2y-3=0垂直,求b的值;
(2)求函數(shù)f(x)在區(qū)間[0,1]上的最小值;
(3)若存在區(qū)間M,使得函數(shù)f(x)和g(x)在區(qū)間M上具有相同的單調(diào)性,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}+5x+6$在區(qū)間[1,3]上單調(diào)遞減,則實數(shù)a的取值范圍是(-∞,-3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(a+1)lnx+ax2+1.
(Ⅰ)若函數(shù)f(x)在x=1處切線的斜率k=-$\frac{1}{2}$,求實數(shù)a的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若xf′(x)≥x2+x+1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖所示是y=f(x)的導(dǎo)數(shù)圖象,則正確的判斷是(  )
①f(x)在(3,+∞)上是增函數(shù);
②x=1是f(x)的極大值點;
③x=4是f(x)的極小值點;
④f(x)在(-∞,-1)上是減函數(shù).
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖是函數(shù)f(x)=x3+bx2+cx+d的大致圖象,則$x_1^{\;}+x_2^{\;}$=$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊答案