14.在各項(xiàng)不為零的等差數(shù)列{an}中,$a_7^2=2({a_3}+{a_{11}})$.?dāng)?shù)列{bn}是等比數(shù)列,且b7=a7則b6b8=(  )
A.2B.4C.8D.16

分析 利用等差數(shù)列的性質(zhì)首先求得a7的值,然后結(jié)合等比數(shù)列的性質(zhì)即可求得最終結(jié)果.

解答 解:由等差數(shù)列的性質(zhì)有:a3+a11=2a7,
據(jù)此可得:${a}_{7}^{2}=2×2{a}_{7}=4{a}_{7}$,數(shù)列{an}是各項(xiàng)不為零的等差數(shù)列,則a7=4,
故b7=a7=4,
結(jié)合等比數(shù)列的性質(zhì)可得:$_{6}_{8}=_{7}^{2}=16$.
故選:D.

點(diǎn)評(píng) 本題考查等差數(shù)列的性質(zhì),等比數(shù)列的性質(zhì)等,重點(diǎn)考查學(xué)生對(duì)基礎(chǔ)概念的理解和計(jì)算能力,屬于中等題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示的多面體ABCDEF,四邊形ABCD是邊長(zhǎng)為2的正方形,面BDFE⊥面ABCD,四邊形BDFE為矩形,BE長(zhǎng)為a,M為AE的中點(diǎn),AC∩BD=O.
(1)求證:OM∥平面ADF;
(2)若BF⊥AE,求三棱錐E-BOM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$\frac{1+cos2α}{sin2α}=\frac{1}{2}$,則tanα=( 。
A.2B.3C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,五面體ABCDE中,AB∥CD,CB⊥平面ABE,AE⊥AB,AB=AE=2,BC=$\sqrt{2}$,CD=1.
(1)求證:直線BD⊥AE;
(2)求證:直線BD⊥平面ACE;
(3)求DE與平面ABE所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=x3+ax-2在區(qū)間[1,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.[3,+∞)B.(-3,+∞)C.[-3,+∞)D.(-∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面邊長(zhǎng)為a,E是PC的中點(diǎn).
(1)求證:PA∥面BDE;
(2)求證:BD⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{m}$=(sin($\frac{π}{2}$-x),$-\sqrt{3}cosx)$,$\overrightarrow{n}$=(sinx,cosx),f(x)=$\overrightarrow{m}$?$\overrightarrow{n}$.
(1)求f(x)的最大值和對(duì)稱軸方程;
(2)討論f(x)在$[\frac{π}{6},\frac{2π}{3}]$上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.下列命題:①x=2是x2-4x+4=0的必要不充分條件;②圓心到直線的距離等于半徑是這條直線為圓的切線的充分必要條件;③sin α=sin β是α=β的充要條件;④ab≠0是a≠0的充分不必要條件.其中為真命題的是②④.(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若關(guān)于x的不等式|a-1|≥|2x+1|+|2x-3|的解集非空,則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,-3]∪[5,+∞)B.(-∞,-3)∪(5,+∞)C.[-3,5]D.(-3,5)

查看答案和解析>>

同步練習(xí)冊(cè)答案