5.已知數(shù)列{an}的前n項和Sn=kn-1(k∈R),且{an}既不是等差數(shù)列,也不是等比數(shù)列,則k的值是0.

分析 對k分類討論,利用遞推關(guān)系、等差數(shù)列與等比數(shù)列的定義及其通項公式即可得出.

解答 解:∵Sn=kn-1(k∈R),
∴a1=S1=k-1,
當(dāng)n≥2時,an=Sn-Sn-1=(kn-1)-(kn-1-1)=(k-1)kn-1
當(dāng)k=0時,a1=-1,an=0(n≥2),此時數(shù)列{an}既不是等差數(shù)列,也不是等比數(shù)列;
當(dāng)k=1時,an=0,此時數(shù)列{an}是等差數(shù)列,舍去;
k≠0,1時,an-an-1=(k-1)kn-1-(k-1)kn-2=(k-1)2•kn-2,與n有關(guān),不是常數(shù),不可能為等差數(shù)列.
$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{(k-1)×{k}^{n}}{(k-1)×{k}^{n-1}}$=k,此時數(shù)列{an}是等比數(shù)列.
綜上可得:k=0,
故答案為:0.

點評 本題考查了遞推關(guān)系、等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.是否存在復(fù)數(shù)z.使其滿足$\overline{z}$•z+$2i\overline{z}$=3+ai?如果存在.求實數(shù)a的取值范圍;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥-1}\\{y≥x}\\{3x+5y≤8}\end{array}\right.$,則z=$\frac{y}{x-2}$的取值范圍為[-1,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f′(x)是定義在R上的函數(shù)f(x)的導(dǎo)函數(shù),且滿足f′(x)>1,則不等式f(x)+2x+1>f(3x+1)的解集為( 。
A.$\{x|x<-\frac{1}{2}\}$B.{x|x<1}C.$\{x|x>-\frac{1}{2}\}$D.{x|x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=ln$\frac{x({e}^{x}-{e}^{-x})}{2}$,則f(x)是( 。
A.奇函數(shù),且在(0,+∞)上單調(diào)遞減B.奇函數(shù),且在(0,+∞)上單凋遞增
C.偶函數(shù),且在(0,+∞)上單調(diào)遞減D.偶函數(shù),且在(0,+∞)上單凋遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知f(x)=$\frac{lnx}{x}$,求f′(1)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.?dāng)?shù)列{an}滿足a1=2,且nan+1-(n+1)an=n(n+1)
(I)求數(shù)列{an}的通項公式;
(Ⅱ)已知bn=(n+1)2,求證:$\frac{1}{{a}_{1}+_{1}}$+$\frac{1}{{a}_{2}+_{2}}$+…+$\frac{1}{{a}_{n}+_{n}}$$<\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.復(fù)數(shù)z=(a+i)(1-i),a∈R,i是虛數(shù)單位.若|z|=2,則a=(  )
A.1B.-1C.0D.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)若函數(shù)f(x)=4x3-ax+3的單調(diào)遞減區(qū)間是[-$\frac{1}{2}$,$\frac{1}{2}$],則實數(shù)a的值是多少?
(2)若函數(shù)f(x)=4x3-ax+3在[-$\frac{1}{2}$,$\frac{1}{2}$]上是單調(diào)函數(shù),則實數(shù)a的取值范圍為多少?

查看答案和解析>>

同步練習(xí)冊答案