17.在121個(gè)學(xué)生中,一年級(jí)有25人,二年級(jí)有36人,三年級(jí)有60個(gè),現(xiàn)抽取容量為20的樣本.用系統(tǒng)抽樣法:先隨機(jī)去掉一人,再從剩余人員中抽取容量為20的樣本,整個(gè)過程中每個(gè)體被抽取到的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{36}$
C.$\frac{20}{121}$D.不能確定,與去掉的人有

分析 在系統(tǒng)抽樣中,每個(gè)個(gè)體被抽到的概率都相等,都等于樣本容量除以總體個(gè)數(shù)得到的數(shù)值.

解答 解:由題意可得,在系統(tǒng)抽樣中,每個(gè)個(gè)體被抽到的概率都相等,都等于$\frac{20}{121}$,
故選:C.

點(diǎn)評(píng) 本題主要考查系統(tǒng)抽樣的特點(diǎn),等可能事件的概率,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知點(diǎn)A是單位圓與x軸正半軸的交點(diǎn),點(diǎn)B在第二象限.記∠AOB=θ且$sinθ=\frac{4}{5}$.則$\frac{{sin({π+θ})+2sin({\frac{π}{2}-θ})}}{{2tan({π-θ})}}$=( 。
A.$\frac{3}{20}$B.$\frac{3}{4}$C.$-\frac{3}{10}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知關(guān)于x的函數(shù)y=x3-ax+b.若函數(shù)y在(1,+∞)內(nèi)是增函數(shù),求a得取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ex-x2-ax.若函數(shù)f(x)在R上是增函數(shù),求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.四名同學(xué)根據(jù)各自的樣本數(shù)據(jù)研究變量x,y之間的相關(guān)關(guān)系,并求得回歸直線方程和相關(guān)關(guān)系系數(shù)r,分別得到以下四個(gè)結(jié)論:
①y=2.347x-6.423,且r=-0.9284;
②y=-3.476x+5.648,且r=-0.9533;
③y=5.437x+8.493,且r=0.9830; 
④y=-4.326x-4.578,且r=0.8997.
其中一定不正確的結(jié)論的序號(hào)是( 。
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=lnx-ax2+ax有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為a>0且a≠1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=$\frac{|x|-1}{|x-1|}$-kx不存在零點(diǎn),則實(shí)數(shù)k的取值范圍是[-1,$\frac{\sqrt{2}-3}{7}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)f(x)=|2x-1|-a有且只有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是a=0或a≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=(ax2+x+2)ex(a$>\frac{1}{2}$),其中e是自然對(duì)數(shù)的底數(shù).
(Ⅰ)若f(x)在[-2,2]上是單調(diào)增函數(shù),求a的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),求整數(shù)t的所有值,使方程f(x)=x+4在[t,t+1]上有解.

查看答案和解析>>

同步練習(xí)冊(cè)答案