11.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{log}_{\frac{1}{2}}^{(-x)},x<0\\{log}_{2}^{x},x>0\end{array}\right.$,若f(a)>f(-a),則a的范圍為( 。
A.(-1,0)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-1)∪(0,1)

分析 通過討論a的范圍,結(jié)合對(duì)數(shù)函數(shù)的性質(zhì)判斷a的范圍即可.

解答 解:①當(dāng)a>0時(shí)-a<0,則由f(a)>f(-a),
可得log2a>${log}_{\frac{1}{2}}$(a)=-log2a,
∴l(xiāng)og2a>0,
∴a>1
②當(dāng)a<0時(shí)-a>0,則由f(a)>f(-a),
可得${log}_{\frac{1}{2}}$(-a)>log2(-a),
∴l(xiāng)og2(-a)<0,
∴0<-a<1,
∴-1<a<0,
綜上a的取值范圍為(-1,0)∪(1,+∞),
故選:B.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性問題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知空間中的直線m、n和平面α,且m⊥α.則“m⊥n”是“n?α”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=log2x的導(dǎo)數(shù)為$\frac{1}{xln2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=|x|(1+ax),設(shè)關(guān)于x的不等式f(x+a)>f(x)對(duì)任意x∈R恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合M={0,1,2,3,4},N={1,3,5}且P=M∪N,則P的元素有( 。﹤(gè).
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=2x,g(x)=-$\frac{3x-1}{x}$,則f(x)•g(x)=2-6x,(x≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.對(duì)任意x∈R,函數(shù)y=(k2-k-2)x2-(k-2)x-1的圖象始終在x軸下方,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.$\lim_{n→∞}[{\frac{1}{3}+\frac{1}{8}+…+\frac{1}{{n({n+2})}}}]$=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=2x2-(m2+m+1)x+15,g(x)=m2x-m,其中m∈R.
(1)若f(x)+g(x)+m≥0,對(duì)x∈[1,4)恒成立,求實(shí)數(shù)m的取值范圍;
(2)設(shè)函數(shù)$F(x)=\left\{{\begin{array}{l}{g(x),x≥0}\\{f(x),x<0}\end{array}}\right.$
①對(duì)任意的x1>0,存在唯一的實(shí)數(shù)x2<0,使其F(x1)=F(x2),求m的取值范圍;
②是否存在求實(shí)數(shù)m,對(duì)任意給定的非零實(shí)數(shù)x1,存在唯一非零實(shí)數(shù)x2(x1≠x2),使其F(x2)=F(x1),若存在,求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案