【題目】下表列出了1058歲兒童的體重x(單位kg)(這是容易測得的)和體積y(單位dm3)(這是難以測得的),繪制散點圖發(fā)現(xiàn),可用線性回歸模型擬合yx的關(guān)系:

體重x

17.00 10.50 13.80 15.70 11.90 10.20 15.00 17.80 16.00 12.10

體積y

16. 70 10.40 13.50 15.70 11.60 10.00 14.50 17.50 15.40 11.70

(1)y關(guān)于x的線性回歸方程(系數(shù)精確到0.01);

(2)5歲兒童的體重為13.00kg,估測此兒童的體積.

附注:參考數(shù)據(jù):,,,,

,,137×14=1918.00

參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:,

【答案】1;(2.

【解析】

1)根據(jù)題中提供的公式以及數(shù)據(jù),即可求解;

2)將代入(1)中的回歸方程,即可得出結(jié)論.

1)由參考公式和參考數(shù)據(jù)可得:

,

,

所以,y關(guān)于x的線性回歸方程;

2)將某5歲兒童的體重代入回歸方程得:

,

所以預測此兒童的體積是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某北方村莊4個草莓基地,采用水培陽光栽培方式種植的草莓個大味美,一上市便成為消費者爭相購買的對象.光照是影響草莓生長的關(guān)鍵因素,過去50年的資料顯示,該村莊一年當中12個月份的月光照量X(小時)的頻率分布直方圖如下圖所示(注:月光照量指的是當月陽光照射總時長).

1)求月光照量(小時)的平均數(shù)和中位數(shù);

2)現(xiàn)準備按照月光照量來分層抽樣,抽取一年中的4個月份來比較草莓的生長狀況,問:應(yīng)在月光照量,,的區(qū)間內(nèi)各抽取多少個月份?

3)假設(shè)每年中最熱的5,6,78,910月的月光照量是大于等于240小時,且67,8月的月光照量是大于等于320小時,那么,從該村莊2018年的5,67,89,106個月份之中隨機抽取2個月份的月光照量進行調(diào)查,求抽取到的2個月份的月光照量(小時)都不低于320的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,將直線l沿x軸正方向平移3個單位長度,沿y軸正方向平移5個單位長度,得到直線l1.再將直線l1沿x軸正方向平移1個單位長度,沿y軸負方向平移2個單位長度,又與直線l重合.若直線l與直線l1關(guān)于點(2,3)對稱,則直線l的方程是________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,焦距為,直線過橢圓的左焦點.

1)求橢圓的標準方程;

2)若直線軸交于點是橢圓上的兩個動點,的平分線在軸上,.試判斷直線是否過定點,若過定點,求出定點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌經(jīng)銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認為“微信控”與“性別”有關(guān)?

(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);

(3)從(2)中抽取的5位女性中,再隨機抽取3人贈送禮品,試求抽取3人中恰有2人位“微信控”的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點是拋物線的焦點,點,分別在拋物線和圓的實線部分上運動,且總是平行于軸,則周長的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的方程為

(1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求曲線的極坐標方程和直線的極坐標方程;

(2)在(1)的條件下,直線的極坐標方程為,設(shè)曲線與直線的交于點和點,曲線與直線的交于點和點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若是曲線的切線,的值;

2)若,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,橢圓C的中心在坐標原點O,其右焦點為,且點在橢圓C上.

求橢圓C的方程;

設(shè)橢圓的左、右頂點分別為AB,M是橢圓上異于AB的任意一點,直線MF交橢圓C于另一點N,直線MB交直線Q點,求證:A,N,Q三點在同一條直線上.

查看答案和解析>>

同步練習冊答案