2.設(shè)函數(shù)f(x)=$\frac{1}{2}$sin(2x-$\frac{π}{3}$),則該函數(shù)的最小正周期為π,值域?yàn)閇-$\frac{1}{2}$,$\frac{1}{2}$].

分析 利用y=Asin(ωx+φ)的周期等于 T=$\frac{2π}{ω}$,正弦函數(shù)的值域,得出結(jié)論.

解答 解:函數(shù)f(x)=$\frac{1}{2}$sin(2x-$\frac{π}{3}$)的最小正周期為$\frac{2π}{2}$=π,
它的值域?yàn)閇-$\frac{1}{2}$,$\frac{1}{2}$],
故答案為:π;$[-\frac{1}{2},\frac{1}{2}]$.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的周期性及其求法,利用了y=Asin(ωx+φ)的周期等于 T=$\frac{2π}{ω}$,正弦函數(shù)的值域,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知拋物線x2=4y,直線y=k(k為常數(shù))與拋物線交于A,B兩個(gè)不同點(diǎn),若在拋物線上存在一點(diǎn)P(不與A,B重合),滿足$\overrightarrow{PA}•\overrightarrow{PB}=0$,則實(shí)數(shù)k的取值范圍為( 。
A.k≥2B.k≥4C.0<k≤2D.0<k≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,斜三棱柱ABC-A1B1C1中,平面ACC1A1⊥平面BCC1B1,E為棱CC1的中點(diǎn),A1B與AB1交于點(diǎn)O.若AC=CC1=2BC=2,∠ACC1=∠CBB1=60°.
(Ⅰ)證明:直線OE∥平面ABC;
(Ⅱ)證明:平面ABE⊥平面AB1E;
(Ⅲ)求直線A1B與平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.化簡(jiǎn):$\overrightarrow{AB}$+$\overrightarrow{CD}$+$\overrightarrow{EC}$-$\overrightarrow{EB}$=$\overrightarrow{AD}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.用反證法證明命題“若sinθ$\sqrt{1-{{cos}^2}θ}$+cosθ•$\sqrt{1-{{sin}^2}θ}$=1,則sinθ≥0且cosθ≥0”時(shí),下列假設(shè)的結(jié)論正確的是( 。
A.sinθ≥0或cosθ≥0B.sinθ<0或cosθ<0C.sinθ<0且cosθ<0D.sinθ>0且cosθ>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=1-$\frac{2}{{{2^x}+1}}$(x∈R),
(1)求反函數(shù)f-1(x); 
(2)解不等式f-1(x)>log2(1+x)+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ax-$\frac{1}{x}$-(a+1)lnx,a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a≥1時(shí),若f(x)>1在區(qū)間[$\frac{1}{e}$,e]上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=-2cosx-x,g(x)=-lnx-$\frac{k}{x}$(k>0).
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若對(duì)任意x1∈[0,$\frac{1}{2}$],總存在x2∈[$\frac{1}{2}$,1],使得f(x1)<g(x2),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.平面直角坐標(biāo)系中有A(0,1),B(2,1),C(3,4),D(-1,2)四點(diǎn),求過A,B,C三點(diǎn)的圓的方程,并判斷點(diǎn)D與圓的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案