9.如圖程序框圖是為了計(jì)算和式$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{8}$+$\frac{1}{10}$+$\frac{1}{12}$的值,那么在空白框中,可以填入( 。
A.i≤7?B.i≤6?C.i≥6?D.i≥7?

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,模擬程序的運(yùn)行即可得解.

解答 解:和式$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{8}$+$\frac{1}{10}$+$\frac{1}{12}$的最后一次進(jìn)行循環(huán)時(shí)n=10,i=6,
所以判斷框可以填入i≤6?;
故選B.

點(diǎn)評 根據(jù)流程圖(或偽代碼)寫程序的運(yùn)行結(jié)果,是算法這一模塊最重要的題型,其處理方法是:①分析流程圖(或偽代碼),從流程圖(或偽代碼)中既要分析出計(jì)算的類型,又要分析出參與計(jì)算的數(shù)據(jù)(如果參與運(yùn)算的數(shù)據(jù)比較多,也可使用表格對數(shù)據(jù)進(jìn)行分析管理)⇒②建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型③解模.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.執(zhí)行如圖的程序框圖,若輸入的a,b分別為78,182,則輸出的a=(  )
A.0B.2C.13D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=(1-2a)lnx+ax+$\frac{2}{x}$,其中a∈R.
(1)當(dāng)a=1時(shí),求f(x)的極值;
(2)記函數(shù)g(x)=f(x)+(2a-3)lnx-$\frac{3a+4}{x}$,若g(x)在區(qū)間[1,4]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.袋中有大小形狀都相同的4個(gè)黑球和2個(gè)白球.如果不放回地依次取出2球,那么在第1次取到的是黑球的條件下,第2次取到黑球的概率為( 。
A.$\frac{1}{2}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在某次電影展映活動(dòng)中,展映的影片有科幻片和文藝片兩種類型,統(tǒng)計(jì)一隨機(jī)抽樣調(diào)查的樣本數(shù)據(jù)顯示,100名男性觀眾中選擇科幻片的有60名,女性觀眾中有$\frac{2}{3}$的選擇文藝片,選擇文藝片的觀眾中男性觀眾和女性觀眾一樣多.
(1)根據(jù)以上數(shù)據(jù)完成下列2×2列聯(lián)表:
科幻片文藝片總計(jì)
總計(jì)
(2)能否在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為選擇影片類型與性別有關(guān)?
附:
P(K2≥k00.100.050.0250.0100.001
K02.7063.8415.0246.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(2cos$\frac{ωx}{2}$,$\sqrt{3}$sin$\frac{ωx}{2}$),$\overrightarrow$=(cos$\frac{ωx}{2}$,2cos$\frac{ωx}{2}$),(ω>0),設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,且f(x)的最小正周期為π.
(1)求函數(shù)f(x)的表達(dá)式;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知cosα+sin(α-$\frac{π}{6}$)=-$\frac{1}{3}$,則cos(2α+$\frac{π}{3}$)=$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知隨機(jī)變量X~N(2,σ2),且P(1<X≤3)=0.9544,則P(2<X≤2.5)=( 。
(附:隨機(jī)變景X~N(μ,σ2),則P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544)
A.0.9544B.0.6829C.0.4772D.0.3413

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某公司推銷一種商品,其廣告費(fèi)支出x與銷售額y(單位:萬元)之間有如下對應(yīng)數(shù)據(jù),
x24568
y3040m5070
根據(jù)表中提供的全部數(shù)據(jù),用最小二乘法得出$\stackrel{∧}{y}$與x的線性回歸方程為$\stackrel{∧}{y}$=6.5x+15.5,則表中m的值為(  )
A.45B.50C.55D.60

查看答案和解析>>

同步練習(xí)冊答案