6.某公司推銷(xiāo)一種商品,其廣告費(fèi)支出x與銷(xiāo)售額y(單位:萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù),
x24568
y3040m5070
根據(jù)表中提供的全部數(shù)據(jù),用最小二乘法得出$\stackrel{∧}{y}$與x的線性回歸方程為$\stackrel{∧}{y}$=6.5x+15.5,則表中m的值為( 。
A.45B.50C.55D.60

分析 根據(jù)表中數(shù)據(jù),計(jì)算$\overline{x}$、$\overline{y}$,代入線性回歸方程中求出m的值.

解答 解:根據(jù)表中數(shù)據(jù),計(jì)算$\overline{x}$=$\frac{1}{5}$×(2+4+5+6+8)=5,
$\overline{y}$=$\frac{1}{5}$×(30+40+m+50+70)=$\frac{190+m}{5}$,
代入線性回歸方程$\stackrel{∧}{y}$=6.5x+15.5,
得$\frac{190+m}{5}$=6.5×5+15.5,
解得m=50.
故選:B.

點(diǎn)評(píng) 本題考查了線性回歸方程過(guò)樣本中心點(diǎn)的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖程序框圖是為了計(jì)算和式$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{8}$+$\frac{1}{10}$+$\frac{1}{12}$的值,那么在空白框中,可以填入( 。
A.i≤7?B.i≤6?C.i≥6?D.i≥7?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.?dāng)?shù)列{an}滿足a1=1,an+1=an+2(n∈N*),則a10=19,S10=100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.要描述一工廠某產(chǎn)品的生產(chǎn)工藝,應(yīng)用(  )
A.程序框圖B.組織結(jié)構(gòu)圖C.知識(shí)結(jié)構(gòu)圖D.工序流程圖

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知對(duì)數(shù)函數(shù) f ( x)的圖象過(guò)點(diǎn)(10,1),對(duì)數(shù)函數(shù)g( x)的圖象過(guò)點(diǎn)($\frac{1}{10}$,1).
(1)求 f(x),g (x)的解析式;
(2)求當(dāng) x 為何值時(shí):①f ( x )>g ( x),②f ( x )=g ( x),③f ( x )<g ( x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知 a=$(\frac{1}{2}{)^{\frac{1}{3}}}$,b=ln$\frac{1}{3}$,c=log${\;}_{\frac{1}{2}}^{\frac{1}{3}}$,則 a,b,c 的大小關(guān)系為( 。
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某種產(chǎn)品的廣告費(fèi)支出x與銷(xiāo)售額y之間有如下五組對(duì)應(yīng)數(shù)據(jù):
x(萬(wàn)元)24568
y(萬(wàn)元)2836525678
(1)求y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$
(2)根據(jù)(1)中的線性回歸方程,回答下列問(wèn)題:
(i)當(dāng)廣告費(fèi)支出為10萬(wàn)元時(shí),預(yù)測(cè)銷(xiāo)售額是多少?
(ii)從已知的五組數(shù)據(jù)中任意抽取兩組數(shù)據(jù),求這兩組數(shù)據(jù)中至少有一組數(shù)據(jù)其銷(xiāo)售額的實(shí)際值y與預(yù)測(cè)值$\stackrel{∧}{y}$之差的絕對(duì)值不超過(guò)3萬(wàn)元的概率
參考數(shù)據(jù):$\sum_{i=1}^{5}$xi2=145,$\sum_{i=1}^{5}$yi2=14004,$\sum_{i=1}^{5}$xiyi=1420
附:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘估計(jì)公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知等差數(shù)列{an}中,a1009=0,則a1+a2+…+am=a1+a2+…+a2017-m(m<2017).若等比數(shù)列{bn}中,若b1010=1,類(lèi)比上述等差數(shù)列的結(jié)論,試寫(xiě)出等比數(shù)列的結(jié)論為b1b2…bn=b1b2…b2019-n(n<2019,n∈N*)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知b=2,B=$\frac{π}{3}$,且△ABC的面積S=$\sqrt{3}$,則a+c=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案