8.若復(fù)數(shù)$z=\frac{1+i}{1-i}$,則$\overline z$的虛部為(  )
A.1B.-1C.iD.-i

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:∵復(fù)數(shù)$z=\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}$=$\frac{2i}{2}$=i,
$\overline{z}$=-i,
則$\overline z$的虛部為-1.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.過(guò)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1的右焦點(diǎn)F作斜率k=-1的直線交橢圓于A,B兩點(diǎn),且$\overrightarrow{OA}+\overrightarrow{OB}與\overrightarrow a=(1,\frac{1}{3})$共線.
(1)求橢圓的離心率;
(2)當(dāng)三角形AOB的面積S△AOB=$\frac{{\sqrt{3}}}{2}$時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)a=log32,b=log92,c=20.5,則有( 。
A.a<b<cB.c<b<aC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知{an}是等比數(shù)列,a2=18,a4=8,求a1和q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=x2-ax的圖象在點(diǎn)A(1,f(1))處的切線與直線x+3y+2=0垂直,執(zhí)行如圖所示的程序框圖,輸出的k值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x+2y-4≥0\\ 3x+y-3≥0\end{array}\right.$,若$\overrightarrow a=(y,x+m)$,$\overrightarrow b=(y,x-m)$,且$\overrightarrow a⊥\overrightarrow b$,則正實(shí)數(shù)m的最小值為( 。
A.$\frac{{\sqrt{85}}}{5}$B.$\frac{{4\sqrt{5}}}{5}$C.$\frac{{3\sqrt{10}}}{10}$D.$\frac{16}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若復(fù)數(shù)z=1-i,i為虛數(shù)單位,則$\frac{2-z}{z}$=(  )
A.-iB.iC.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知雙曲線kx2-y2=1的一條漸近線與直線2x+y+1=0垂直,則雙曲線的離心率是(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC 中,若A=$\frac{π}{3}$,cosB=$\frac{{\sqrt{6}}}{3}$,BC=6,則 AC=( 。
A.4$\sqrt{2}$B.4C.2$\sqrt{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案