棱長(zhǎng)為2的四棱錐底面ABCD是正方形,將側(cè)面PBC水平放置,則這個(gè)幾何體的三視圖中,俯視圖的面積為
 
考點(diǎn):簡(jiǎn)單空間圖形的三視圖
專(zhuān)題:空間位置關(guān)系與距離
分析:根據(jù)已知畫(huà)出側(cè)面PBC水平放置時(shí),幾何體的俯視圖,并求出相應(yīng)的邊長(zhǎng),代入矩形和三角形面積公式后可得答案.
解答: 解:作棱錐的軸截面(其中E,F(xiàn)為底面對(duì)邊AD和BC的中點(diǎn),O為底面中心),如下圖所示:

∵則四棱錐的棱長(zhǎng)為2,
∴EF=2,PE=PF=
3
,PO=
2
,
作EG⊥PF,垂足為G,則EG=
PO•EF
PF
=
2
6
3
,PG=
PE2-EG2
=
3
3
,
將側(cè)面PBC水平放置后,棱錐的俯視圖如圖所示,
則△PBC是等邊三角形,PE=
3
,

∴FG=PF-PG=
3
-
3
3
=
2
3
3
,
∴俯視圖面積=2×
2
3
3
+
1
2
×2×
3
3
=
5
3
3
,
故答案為:
5
3
3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是簡(jiǎn)單幾何體的三視圖,其中畫(huà)出滿(mǎn)足條件的圖形是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)袋子中有藍(lán)色球10個(gè),紅球6個(gè),白球若干個(gè),這些球除顏色外其余完全相同.
(1)隨機(jī)取出1球,若取到白球的概率是
1
3
,求白球的個(gè)數(shù);
(2)從袋子中取出4個(gè)紅球,分別編號(hào)為1號(hào),2號(hào),3號(hào),4號(hào),將這四個(gè)球裝入一個(gè)盒子中,甲和乙從盒子中各取一個(gè)球,(甲先取,取出的球不放回),求兩球的編號(hào)之和不大于5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=2+i,其中i為虛數(shù)單位,則z2的實(shí)部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F(x,y)=(x+y)2+(x-
2
y
2,(x,y∈R,y≠0),則F(x,y)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的方程4x-a•2x+4=0在[0,+∞)上有兩個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

古埃及數(shù)學(xué)中有一個(gè)獨(dú)特現(xiàn)象:除
2
3
用一個(gè)單獨(dú)的符號(hào)表示以外,其他分?jǐn)?shù)都要寫(xiě)成若干個(gè)單位分?jǐn)?shù)和的形式.例如
2
5
=
1
3
+
1
15
,可以這樣來(lái)理解:假定有兩個(gè)面包,要平均分給5個(gè)人,每人
1
2
不夠,每人
1
3
1
3
,再將這
1
3
分成5份,每人得
1
15
,這樣每人分得
1
3
+
1
15
.形如
2
n
(n=5,7,9,11,…)的分?jǐn)?shù)的分解:
2
5
=
1
3
+
1
15
,
2
7
=
1
4
+
1
28
2
9
=
1
5
+
1
45
,…,按此規(guī)律,則(1)
2
11
=
 
.(2)
2
n
=
 
.(n=5,7,9,11,…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題:
①已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.1;
②已知命題P:?x0∈R,tanx0=1;命題q:?x∈R,x2-x+1>0,則命題“p∧¬q”是假命題;
③設(shè)回歸直線方程為
y
=2.5-2x,當(dāng)變量x增加1個(gè)單位時(shí),y平均增加2個(gè)單位;
④設(shè)a,b為實(shí)數(shù),則“0<ab<1”是“b<
1
a
”的充分而不必要條件;
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x∈(-
π
2
π
2
),為了運(yùn)行如圖所示的偽代碼后輸出的y值為-
1
2
,則應(yīng)輸入的x值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2-2x-2)ex,方程f(x)=m有三個(gè)解,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案