【題目】已知數(shù)列滿(mǎn)足:,,且、、成等差數(shù)列,其中.
(1)求實(shí)數(shù)的值和數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿(mǎn)足等式:(),求數(shù)列的前項(xiàng)和;
(3)在(2)的條件下,問(wèn):是否存在這樣的正數(shù),可以確保恰有5個(gè)自然數(shù)使得不等式成立?若存在,求的取值范圍,若不存在,說(shuō)明理由.
【答案】(1),;(2);(3)存在,.
【解析】
由題意和等差中項(xiàng)的性質(zhì)列出關(guān)于的方程求出,再利用累加法求出數(shù)列的通項(xiàng)公式即可.
類(lèi)比已知前項(xiàng)和求通項(xiàng)公式的方法,由等式,得到
,兩式相減得到,利用求出的通項(xiàng)公式,當(dāng)時(shí),,即可求出.
結(jié)合條件對(duì)進(jìn)行分類(lèi)討論,當(dāng)時(shí),利用分離參數(shù)法化簡(jiǎn)得,利用取特殊值和比商法判斷出的單調(diào)性,進(jìn)而判斷出的單調(diào)性,根據(jù)條件即可求出正數(shù)的取值范圍.
因?yàn)?/span>,,
所以,,
因?yàn)?/span>、、成等差數(shù)列,
所以,即,
解得,,
所以,
以上式子相加可得,,
因?yàn)?/span>,
所以,即.
因?yàn)?/span>,
所以,
可得,,
因?yàn)?/span> ,所以即,
當(dāng)時(shí),,
因?yàn)閿?shù)列的前項(xiàng)和為,
所以.
假設(shè)存在這樣的正數(shù).
因?yàn)?/span>,所以使不等式成立,
即使不等式成立即可.
因?yàn)?/span>,所以當(dāng)時(shí),上式顯然成立,
當(dāng)時(shí),不等式可化為,
當(dāng)時(shí),;當(dāng)時(shí),;
當(dāng)時(shí),;當(dāng)時(shí),;
令,則,
當(dāng)時(shí),,則,
所以當(dāng)時(shí),隨著的增大而增大,則隨著的增大而減小,
因?yàn)槭共坏仁?/span>成立的自然數(shù)恰有5個(gè),
所以正數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為矩形.平面,分別為的中點(diǎn),與平面所成的角為.
(1)證明:為異面直線(xiàn)與的公垂線(xiàn);
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),若無(wú)窮數(shù)列滿(mǎn)足:對(duì)所有整數(shù),都成立,則稱(chēng)“-折疊數(shù)列”.
(1)求所有的實(shí)數(shù),使得通項(xiàng)公式為的數(shù)列是-折疊數(shù)列;
(2)給定常數(shù),是否存在數(shù)列,使得對(duì)所有,都是-折疊數(shù)列,且的各項(xiàng)中恰有個(gè)不同的值?證明你的結(jié)論;
(3)設(shè)遞增數(shù)列滿(mǎn)足.已知如果對(duì)所有,都是-折疊數(shù)列,則的各項(xiàng)中至多只有個(gè)不同的值,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是定義域?yàn)?/span>的函數(shù),對(duì)任意,都滿(mǎn)足:,,且當(dāng)時(shí),.
(1)請(qǐng)指出在區(qū)間上的奇偶性、單調(diào)區(qū)間、零點(diǎn);
(2)試證明是周期函數(shù),并求其在區(qū)間()上的解析式;
(3)方程有三個(gè)不等根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為更好地落實(shí)農(nóng)民工工資保證金制度,南方某市勞動(dòng)保障部門(mén)調(diào)查了2018年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工的月工資均在(百元)內(nèi),且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫(huà)出如圖所示的頻率分布直方圖:
(1)求的值;
(2)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名.
①完成如下所示列聯(lián)表
技術(shù)工 | 非技術(shù)工 | 總計(jì) | |
月工資不高于平均數(shù) | |||
月工資高于平均數(shù) | |||
總計(jì) |
②則能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?
參考公式及數(shù)據(jù):,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,橢圓:的離心率為,直線(xiàn)與交于,兩點(diǎn),長(zhǎng)度的最大值為4.
(1)求的方程;
(2)直線(xiàn)與軸的交點(diǎn)為,當(dāng)直線(xiàn)變化(不與軸重合)時(shí),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線(xiàn),圓,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求的極坐標(biāo)方程;
(2)若直線(xiàn)的極坐標(biāo)方程為,設(shè)的交點(diǎn)為A,B,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的上下兩個(gè)焦點(diǎn)分別為,過(guò)點(diǎn)與軸垂直的直線(xiàn)交橢圓于兩點(diǎn),的面積為,橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知為坐標(biāo)原點(diǎn),直線(xiàn)與軸交于點(diǎn),與橢園交于兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ln(a x)+bx在點(diǎn)(1,f(1))處的切線(xiàn)是y=0;
(I)求函數(shù)f(x)的極值;
(II)當(dāng)恒成立時(shí),求實(shí)數(shù)m的取值范圍(e為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com