【題目】已知,橢圓的離心率為,直線交于兩點(diǎn),長度的最大值為4.

1)求的方程;

2)直線軸的交點(diǎn)為,當(dāng)直線變化(不與軸重合)時(shí),若,求點(diǎn)的坐標(biāo).

【答案】1;(2.

【解析】

(1)由橢圓中弦長最長的位置在長軸位置可得的值,再由離心率并結(jié)合求得的值,從而求得橢圓的標(biāo)準(zhǔn)方程;

(2)如圖所示:

由題中關(guān)系式利用平面幾何知識(shí)結(jié)合正弦定理可得:MPA=∠MPB,進(jìn)而可得kPA=-kPB,設(shè)A點(diǎn)坐標(biāo),B點(diǎn)坐標(biāo),M點(diǎn)坐標(biāo)(,0)和直線l的方程,和橢圓方程聯(lián)立化簡得,然后利用根的判別式、韋達(dá)定理和斜率公式綜合運(yùn)算可得的值.

1)由題意弦長AB長度的最大值為4,可得2a=4即得a=2,由離心率,

聯(lián)立解得=4, =3,所以橢圓的方程為.

2)設(shè),,的方程為,代入橢圓方程并整理得

,

,

解得,

,.

因?yàn)?/span>,由角平分定理或正弦定理,即可得到

,即,所以,即

,所以,

所以,因?yàn)?/span>為變量,所以,

所以點(diǎn)的坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),給出下列命題:

既是奇函數(shù)又是偶函數(shù),則;

是奇函數(shù),且,則至少有三個(gè)零點(diǎn);

上不是單調(diào)函數(shù),則不存在反函數(shù);

的最大值和最小值分別為,則的值域?yàn)?/span>

則其中正確的命題個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.若曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為,在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn),且傾斜角為.

(1)寫出曲線的直角坐標(biāo)方程以及點(diǎn)的直角坐標(biāo);

(2)設(shè)直線與曲線相交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn)P21).

1)求橢圓C的方程,并求其離心率;

2)過點(diǎn)Px軸的垂線l,設(shè)點(diǎn)A為第四象限內(nèi)一點(diǎn)且在橢圓C上(點(diǎn)A不在直線l上),點(diǎn)A關(guān)于l的對(duì)稱點(diǎn)為A',直線A'PC交于另一點(diǎn)B.設(shè)O為原點(diǎn),判斷直線AB與直線OP的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:,且、成等差數(shù)列,其中.

1)求實(shí)數(shù)的值和數(shù)列的通項(xiàng)公式;

2)若數(shù)列滿足等式:),求數(shù)列的前項(xiàng)和;

3)在(2)的條件下,問:是否存在這樣的正數(shù),可以確保恰有5個(gè)自然數(shù)使得不等式成立?若存在,求的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣a|+3x,其中a>0.

(1)當(dāng)a=1時(shí),求不等式f(x)>3x+2的解集;

(2)若不等式f(x)≤0的解集為{x|x≤﹣1},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若無窮數(shù)列滿足對(duì)所有正整數(shù)成立,則稱數(shù)列,現(xiàn)已知數(shù)列是“數(shù)列”.

1)若,求的值;

2)若對(duì)所有成立,且存在使得,求的所有可能值,并求出相應(yīng)的的通項(xiàng)公式;

3)數(shù)列滿足,證明:是等比數(shù)列當(dāng)且僅當(dāng)是等差數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)、的距離之和等于,設(shè)點(diǎn)的軌跡為,斜率為的直線過點(diǎn),且與軌跡交于、兩點(diǎn).

1)寫出軌跡的方程;

2)如果,求的值;

3)是否存在直線,使得在直線上存在點(diǎn),滿足為等邊三角形?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于數(shù)列,定義

(1),是否存在,使得?請(qǐng)說明理由;

(2) , ,求數(shù)列的通項(xiàng)公式;

(3) ,求證:“為等差數(shù)列”的充要條件是“的前4項(xiàng)為等差數(shù)列為等差數(shù)列”.

查看答案和解析>>

同步練習(xí)冊(cè)答案