下列命題中,真命題是( 。
A、?x0∈R,e x0≤0
B、?x∈R,2x>x2
C、x+
1
x
≥2
D、a2+b2
(a+b)2
2
,a,b∈R
考點(diǎn):基本不等式,命題的真假判斷與應(yīng)用
專題:不等式的解法及應(yīng)用
分析:由不等式的性質(zhì),逐個(gè)選項(xiàng)驗(yàn)證即可.
解答: 解:選項(xiàng)A,由指數(shù)函數(shù)的性質(zhì)可得任意x均有ex>0,故錯(cuò)誤;
選項(xiàng)B,當(dāng)x=3時(shí),不滿足2x>x2,故錯(cuò)誤;
選項(xiàng)C,當(dāng)x為負(fù)數(shù)時(shí),顯然x+
1
x
為負(fù)數(shù),故錯(cuò)誤;
選項(xiàng)D,a2+b2-
(a+b)2
2
=
2a2+2b2
2
-
a2+2ab+b2
2
=
(a-b)2
2
≥0,
故a2+b2
(a+b)2
2
,故正確.
答選:D
點(diǎn)評:本題考查不等式的性質(zhì),屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a1=1,d=1,數(shù)列{bn}滿足b1=a1
bn+1
bn
=
a4
a2

求(1)an的通項(xiàng)公式 
(2)bn的前10項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是奇函數(shù),且當(dāng)x≥0時(shí),f(x)=-x2+x,則不等式xf(x)<0的解集為(  )
A、(-∞,-1)∪(0,1)
B、(-1,0)∪(1,+∞)
C、(-1,0)∪(0,1)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在實(shí)數(shù)集R上有定義,滿足f(0)=1,且對于任意的x1,x2∈R恒有f(x1-x2)=f(x1)-x2(2x-x1+1)成立,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log 
1
2
x,g(x)=x-1,設(shè)h(x)=
f(x),f(x)≥g(x)
g(x),f(x)<g(x)
,則使h(a)≥2成立的a的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=3x+2,則f(a-1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

公差不為0的等差數(shù)列{an}中,已知a1=4且a72=a1a10,其前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式
(2)求Sn的最大值及取得最值時(shí)的n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,若a=15,b=10,A=
π
3
,則cosB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,如果對于任意的x1∈D,存在唯一的x2∈D,使得
f(x1)f(x2)
=C成立(其中C為常數(shù)),則稱函數(shù)y=f(x)在D上的幾何均值為C,現(xiàn)在給出下列3個(gè)函數(shù):①y=x2;②y=lgx;③y=2x,則在其定義域上的幾何均值為2的函數(shù)的個(gè)數(shù)有( 。
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊答案