15.如圖,三棱柱ABC-A1B1C1中,D為AA1的中點(diǎn),E為BC的中點(diǎn).
(1)求證:直線AE∥平面BDC1
(2)若三棱柱 ABC-A1B1C1是正三棱柱,AB=2,AA1=4,求平面BDC1與平面ABC所成二面角的正弦值.

分析 (1)設(shè)BC1的中點(diǎn)為F,連接EF,DF.得到EF是△BCC1中位線,說明EF∥DA,ADFE是平行四邊形,推出AE∥DF,即可證明直線AE∥平面BDC1
(2)建立如圖所示的空間直角坐標(biāo)系B-xyz,求出相關(guān)點(diǎn)的坐標(biāo),求出平面BDC1的一個(gè)法向量,平面ABC的一個(gè)法向量.設(shè)平面BDC1和平面ABC所成二面角的大小為θ,通過向量的數(shù)量積求解平面BDC1和平面ABC所成二面角的正弦值即可.

解答 解:(1)證明:設(shè)BC1的中點(diǎn)為F,連接EF,DF.
則EF是△BCC1中位線,根據(jù)已知得EF∥DA,且 EF=DA.
∴四邊形ADFE是平行四邊形∴AE∥DF,
∵DF?平面BDC1,AE?平面BDC1,
∴直線AE∥平面BDC1
(2)建立如圖所示的空間直角坐標(biāo)系B-xyz,
由已知得$B({0,0,0}),D({0,2,2}),{C_1}({\sqrt{3},1,4})$.∴$\overrightarrow{BD}=({0,2,2}),\overrightarrow{B{C_1}}=({\sqrt{3},1,4})$.
設(shè)平面BDC1的一個(gè)法向量為$\overrightarrow n=({x,y,z})$,
則$\overrightarrow n⊥\overrightarrow{BD},\overrightarrow n⊥\overrightarrow{B{C_1}}$.∴$\left\{\begin{array}{l}2y+2z=0\\ \sqrt{3}x+y+4z=0\end{array}\right.$,
取z=-1,解得$\left\{\begin{array}{l}x=\sqrt{3}\\ y=1\end{array}\right.$.
∴$\overrightarrow n=({\sqrt{3},1,-1})$是平面BDC1的一個(gè)法向量.
由已知易得$\overrightarrow m=({0,0,1})$是平面ABC的一個(gè)法向量.
設(shè)平面BDC1和平面ABC所成二面角的大小為θ,
則$|{cosθ}|=|{\frac{\overrightarrow m•\overrightarrow n}{{|{\overrightarrow m}||{\overrightarrow n}|}}}|=\frac{{\sqrt{5}}}{5}$.∵0<θ<π,∴$sinθ=\frac{{2\sqrt{5}}}{5}$.
∴平面BDC1和平面ABC所成二面角的正弦值為$\frac{{2\sqrt{5}}}{5}$.

點(diǎn)評(píng) 本題考查向量的二面角的大小,直線與平面平行的判斷,考查計(jì)算能力以及空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.圓心坐標(biāo)為(1,2),且與直線2x+y+1=0相切的圓的方程為(x-1)2+(y-2)2=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{-x-2(x≤-1)}\\{-1(-1<x<1)}\\{x-2(x≥1)}\end{array}\right.$
(1)畫出函數(shù)f(x)的圖象并求f(2)+f(0)+f(-2)的值;
(2)若f(x)=3,求x的值;
(3)若f(x)≥2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四邊形ABCD是菱形,DE⊥平面ABCD,AF∥DE,DE=3AF.
(1)求證:平面BAF∥平面CDE;
(2)求證:平面EAC⊥平面EBD;
(3)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知sinx=$\frac{{\sqrt{5}}}{5}$,x∈($\frac{π}{2}$,$\frac{3π}{2}$),則tanx=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.一個(gè)盒子中裝有四張卡片,每張卡片上寫有一個(gè)數(shù)字,數(shù)字分別是1,2,3,4,現(xiàn)從盒子中隨機(jī)抽取卡片,每張卡片被抽到的概率相等.
(1)若一次抽取三張卡片,求抽到的三張卡片上的數(shù)字之和大于7的概率;
(2)若第一次抽一張卡片,放回后攪勻再抽取一張卡片,求兩次抽取中至少有一次抽到寫有數(shù)字3的卡片的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖,將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)的圖象,則關(guān)于函數(shù)g(x):
①函數(shù)在區(qū)間[$\frac{π}{6}$,$\frac{π}{2}$]上遞減;②函數(shù)圖象關(guān)于x=$\frac{π}{4}$對(duì)稱;③函數(shù)在區(qū)間[$\frac{π}{6}$,$\frac{2π}{3}$]上值域?yàn)閇-2,1];④函數(shù)圖象的一個(gè)對(duì)稱中心為($\frac{π}{4}$,0),以上說法正確的是( 。
A.①③B.②③C.①②③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)z滿足z=i(1+z),則在復(fù)平面內(nèi)z對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,直三棱柱ABC-A1B1C1中,AC=BC,四邊形ABB1A1是邊長為1的正方形,若E,F(xiàn)分別是CB1,BA1的中點(diǎn).
(1)求證:EF∥平面ABC;
(2)若AC⊥CB1,求幾何體BCA1B1C1的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案