已知函數(shù)y=
|x2-1|
x-1
與y=k(x-1)的圖象恰有兩個交點(diǎn),則k的取值范圍是
 
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:將函數(shù)y=
|x2-1|
x-1
利用零點(diǎn)分段法化簡函數(shù)的解析式,并畫出函數(shù)的圖象,根據(jù)直線y=k(x-1)過定點(diǎn)A(1,0),數(shù)形結(jié)合可得滿足條件的實(shí)數(shù)k的取值范圍.
解答: 解:函數(shù)變形為y=
|x2-1|
x-1
=
|(x+1)(x-1)|
x-1
=
x+1,x>1,或x<-1
-x-1,-1<x<1
,
直線y=k(x-1)過定點(diǎn)A(1,0),
畫出直線x=1,如圖


根據(jù)圖象可知要使兩個函數(shù)的交點(diǎn)個數(shù)有兩個,
則直線斜率滿足k>0且k≠1.
故答案為:k>0且k≠1.
點(diǎn)評:本題考查了函數(shù)的零點(diǎn)與方程根的關(guān)系,結(jié)合圖象形象直觀.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

地震過后,當(dāng)?shù)厝嗣穹e極恢復(fù)生產(chǎn),焊工王師傅每天都很忙碌.今天他遇到了一個難題:如圖所示,有一塊扇形鋼板,半徑為1m,圓心角θ=
π
3
,廠長要求王師傅按圖中所畫的那樣,在鋼板OPQ上裁下一塊平行四邊形鋼板ABOC,要求使裁下鋼板面積最大.試問王師傅如何確定A點(diǎn)位置,才能使裁下的鋼板符合要求?最大面積為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2-|x|-c的圖象與x軸有公共點(diǎn),則實(shí)數(shù)c的職值范圍是(  )
A、[一1,0)
B、[0,1]
C、(0,1]
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=|log3x|的極值點(diǎn)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)對一切實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y),f(1)=-2,當(dāng)x>0時,f(x)<0.
(1)證明f(x)為R上的減函數(shù);
(2)解不等式f(x-1)-f(1-2x-x2)<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x(x-2)的減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=x3+2x2-1,求x<0時,f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用秦九韶算法計(jì)算多項(xiàng)式f(x)=x7+2x5+3x4+4x3+5x2+6x+7當(dāng)x=3時值時,需要做乘法和加法的次數(shù)分別是( 。
A、6,6B、7,6
C、7,7D、6,7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域
(1)f(x)=2x-3    x∈{ x∈N|1≤x≤5}
(2)y=-x2+9     x∈[-2,3]
(3)y=
x
x-3
 x∈[4,7].

查看答案和解析>>

同步練習(xí)冊答案