18.已知雙曲線C:$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的離心率e=$\frac{\sqrt{5}}{2}$,點(diǎn)P是拋物線y2=4x上的一個(gè)動(dòng)點(diǎn),P到雙曲線C的上焦點(diǎn)F1(0,c)的距離與到直線x=-1的距離之和的最小值為$\sqrt{6}$,則該雙曲線的方程為( 。
A.$\frac{{y}^{2}}{2}-\frac{{x}^{2}}{3}$=1B.y2-$\frac{{x}^{2}}{4}$=1C.$\frac{{y}^{2}}{4}$-x2=1D.$\frac{{y}^{2}}{3}-\frac{{x}^{2}}{2}$=1

分析 由題意可知:P到準(zhǔn)線的距離即為P到焦點(diǎn)的距離為|PF|,可得|PF|+|PF1|的最小值為$\sqrt{6}$,當(dāng)P,F(xiàn),F(xiàn)1三點(diǎn)共線,可得最小值|FF1|=$\sqrt{1+{c}^{2}}$=$\sqrt{6}$,即可求得c,根據(jù)橢圓的離心率即可求得a和b的值,求得雙曲線方程.

解答 解:拋物線y2=4x的焦點(diǎn)F(1,0),準(zhǔn)線的方程為x=-1,
曲線C:$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{^{2}}$=1的離心率e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$,
由P到雙曲線C的上焦點(diǎn)F1(0,c)的距離與到直線x=-1的距離之和的最小值為$\sqrt{6}$,
由拋物線的定義可得P到準(zhǔn)線的距離即為P到焦點(diǎn)的距離為|PF|,
可得|PF|+|PF1|的最小值為$\sqrt{6}$,
當(dāng)P,F(xiàn),F(xiàn)1三點(diǎn)共線,可得最小值|FF1|=$\sqrt{1+{c}^{2}}$=$\sqrt{6}$,
即有c=$\sqrt{5}$,
由c2=a2+b2
解得a=2,b=1,
即有雙曲線的方程為$\frac{{y}^{2}}{4}$-x2=1.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),拋物線的定義,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}x+y-1≥0\\ x-y-1≤0\\ x-3y+3≥0\end{array}\right.$,則z=x+3y的最大值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在平面直角坐標(biāo)系xOy中,曲線C1:x+y=4,曲線${C_2}:\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)),過(guò)原點(diǎn)O的直線l分別交C1,C2于A,B兩點(diǎn),則$\frac{{|{OB}|}}{{|{OA}|}}$的最大值為$\frac{{\sqrt{2}+1}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩頂點(diǎn)為A1,A2,虛軸兩端點(diǎn)為B1,B2,兩焦點(diǎn)為F1,F(xiàn)2,若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2,則雙曲線的離心率是( 。
A.$\sqrt{5}$-1B.$\frac{3+\sqrt{5}}{2}$C.$\frac{\sqrt{5}+1}{2}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)ax2e-x(a≠0)
(Ⅰ)若直線y=e-1x為曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)函數(shù)g(x)=$\frac{1}{2}$(x-$\frac{1}{x}$+f(x))-$\frac{1}{2}$|x-$\frac{1}{x}$-f(x)|-cx2(x>0),在(Ⅰ)的條件下,若函數(shù)g(x)為增函數(shù),求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)F2(1,0),點(diǎn)H(2,$\frac{2\sqrt{10}}{3}$)在橢圓上
(Ⅰ)求橢圓的方程;
(Ⅱ)第一象限內(nèi)一點(diǎn)M在圓C:x2+y2=b2上,過(guò)M作圓C的切線交橢圓于P,Q兩點(diǎn).問(wèn):△PF2Q的周長(zhǎng)是否為定值,若是,求出定值,不是的話(huà)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.甲、乙兩盒中各裝有大小相同的小球9個(gè),其中甲盒中紅色、黑色、白色小球的個(gè)數(shù)分別為2,3,4;乙盒中紅色、黑色、白色小球的個(gè)數(shù)均為3.學(xué)生A從甲盒中取球,學(xué)習(xí)B從乙盒中取球.
(Ⅰ)若A,B各取一球,求兩人所取的球顏色不同的概率;
(Ⅱ)若每人依次各取2球,稱(chēng)同一人手中兩球鹽酸相同的取法為成功取法,記成功取法次數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)$f(x)=|x|+\frac{m}{x}-2$(x≠0).
(1)當(dāng)m=2時(shí),判斷f(x)在(-∞,0)的單調(diào)性,并用定義證明;
(2)討論f(x)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若函數(shù)t=f(x)的值域?yàn)椋?,8],則y=t2-10t-4的值域?yàn)椋ā 。?table class="qanwser">A.[-20,-4)B.[-20,-4]C.[-29,-20]D.[-29,-4)

查看答案和解析>>

同步練習(xí)冊(cè)答案