16.已知點(diǎn)P的極坐標(biāo)是$(1,\frac{π}{3})$,則過點(diǎn)P且垂直于極軸的直線的極坐標(biāo)方程是( 。
A.ρ=1B.ρ=cosθC.$ρ=-\frac{1}{cosθ}$D.$ρ=\frac{1}{2cosθ}$

分析 首先把極坐標(biāo)轉(zhuǎn)化成直角坐標(biāo),進(jìn)一步利用過點(diǎn)P且垂直于極軸的位置關(guān)系求出極坐標(biāo)方程.

解答 解:點(diǎn)P的極坐標(biāo)是$(1,\frac{π}{3})$,轉(zhuǎn)化為直角坐標(biāo)為:($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
則:過點(diǎn)P且垂直于極軸的直線方程為:$ρcosθ=\frac{1}{2}$,
整理為:$ρ=\frac{1}{2cosθ}$,
故選:D.

點(diǎn)評 本題考查的知識要點(diǎn):極坐標(biāo)和直角坐標(biāo)的互化,垂直于極軸的極坐標(biāo)方程的確定.主要考查學(xué)生的應(yīng)用能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,AB是圓O的直徑,且AB=6,CD是弦,BA、CD的延長線交于點(diǎn)P,PA=4,PD=5,則∠COD=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若0≤x≤π,則函數(shù)$y=sin({\frac{π}{3}+x})cos({\frac{π}{2}+x})$的單調(diào)遞增區(qū)間為[$\frac{π}{3},\frac{5π}{6}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四棱錐層-ABCD中,平面EAD⊥ABCD,CD∥AB,BC⊥CD,EA⊥ED.且AB=4,BC=CD=EA=ED=2
(Ⅰ)求證:BD⊥平面ADE;
(Ⅱ)求直線BE和平面CDE所成角的正弦值;
(Ⅲ)在線段CE上是否存在一點(diǎn)F,使得平面BDF上平面CDE?如果存在點(diǎn)F,t請指出點(diǎn)F的位置;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對邊,$a=\sqrt{3}b•sinA-acosB$
(1)求角B.
(2)若b=2,△ABC的面積為$\sqrt{3}$,求a,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓E的中心在坐標(biāo)原點(diǎn)O,它的長軸長,短軸長分別為2a,2$\sqrt{2}$,右焦點(diǎn)F(c,0),直線l:cx-a2=0與x軸相交于點(diǎn)A,$\overrightarrow{OF}=2\overrightarrow{FA}$,過點(diǎn)A的直線m與橢圓E交于P,Q兩點(diǎn).
(Ⅰ)求橢圓E的方程;
(Ⅱ)若以線段PQ為直徑的圓過原點(diǎn)O,求直線m的方程;
(Ⅲ)設(shè)$\overrightarrow{AP}=λ\overrightarrow{AQ}({λ>1})$,過點(diǎn)P且平行于直線l的直線與橢圓E相交于另一點(diǎn)M,求證:$\overrightarrow{FM}=-λ\overrightarrow{FQ}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow{a}$=(1,2n),$\overrightarrow$=(m+n,m)(m>0,n>0),若$\overrightarrow a•\overrightarrow b=1$,則m+n的最小值為$\sqrt{3}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等比數(shù)列f'(x)滿足:an>0,a1=5,Sn為其前n項(xiàng)和,且20S1,S3,7S2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log5a2+log5a4+…+log5a2n+2,求數(shù)列{$\frac{1}{b_n}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某公園有個(gè)池塘,其形狀為直角△ABC,∠C=90°,AB的長為2百米,BC的長為1百米.
(1)若準(zhǔn)備養(yǎng)一批供游客觀賞的魚,分別在AB、BC、CA上取點(diǎn)D、E、F,如圖(1),使得EF∥AB,EF⊥ED,在△DEF內(nèi)喂食,求當(dāng)△DEF的面積取最大值時(shí)EF的長;
(2)若準(zhǔn)備建造一個(gè)荷塘,分別在AB、BC、CA上取點(diǎn)D、E、F,如圖(2),建造△DEF連廊(不考慮寬度)供游客休憩,且使△DEF為正三角形,記∠FEC=α,求△DEF邊長的最小值及此時(shí)α的值.(精確到1米和0.1度)

查看答案和解析>>

同步練習(xí)冊答案