【題目】已知為坐標(biāo)原點(diǎn),拋物線(xiàn)與直線(xiàn)交于點(diǎn),兩點(diǎn),且.

(1)求拋物線(xiàn)的方程;

(2)線(xiàn)段的中點(diǎn)為,過(guò)點(diǎn)且斜率為的直線(xiàn)交拋物線(xiàn),兩點(diǎn),若直線(xiàn)分別與直線(xiàn)交于,兩點(diǎn),當(dāng)時(shí),求斜率的值.

【答案】(1)(2)

【解析】

1)根據(jù)數(shù)量積求出參數(shù)的值即可得到所求方程.(2)求出點(diǎn)的坐標(biāo)為,然后再求出點(diǎn),的坐標(biāo),進(jìn)而得到直線(xiàn),的方程,于是得到的坐標(biāo),最后根據(jù)可求出斜率的值.

(1)由消去整理得,

∵直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),

,解得(舍去).

設(shè),,則,

,

,

,解得,符合題意.

∴拋物線(xiàn)方程為

(2)由(1)得,

,

,

,中點(diǎn)

設(shè)過(guò)點(diǎn)斜率為的直線(xiàn)方程為,即

消去整理得,

其中,故

設(shè),

,

直線(xiàn)的方程為,令,得,

,

同理得,

,

解得,滿(mǎn)足題意.

∴斜率的值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線(xiàn),過(guò)拋物線(xiàn)焦點(diǎn)且與軸垂直的直線(xiàn)與拋物線(xiàn)相交于兩點(diǎn),且的周長(zhǎng)為.

(1)求拋物線(xiàn)的方程;

(2)若過(guò)焦點(diǎn)且斜率為1的直線(xiàn)與拋物線(xiàn)相交于兩點(diǎn),過(guò)點(diǎn)、分別作拋物線(xiàn)的切線(xiàn),切線(xiàn)相交于點(diǎn),求:的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖暅(公元前5~6世紀(jì))是我國(guó)齊梁時(shí)代的數(shù)學(xué)家,是祖沖之的兒子,他提出了一條原原理:“冪勢(shì)既同,則積不容異.”這里的“冪”指水平截面的面積,“勢(shì)”指高。這句話(huà)的意思是:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體體積相等。設(shè)由橢圓 所圍成的平面圖形繞 軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(稱(chēng)為橢球體),課本中介紹了應(yīng)用祖暅原理求球體體積公式的做法,請(qǐng)類(lèi)比此法,求出橢球體體積,其體積等于( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】前些年有些地方由于受到提高的影響,部分企業(yè)只重視經(jīng)濟(jì)效益而沒(méi)有樹(shù)立環(huán)保意識(shí),把大量的污染物排放到空中與地下,嚴(yán)重影響了人們的正常生活,為此政府進(jìn)行強(qiáng)制整治,對(duì)不合格企業(yè)進(jìn)行關(guān)閉、整頓,另一方面進(jìn)行大量的綠化來(lái)凈化和吸附污染物.通過(guò)幾年的整治,環(huán)境明顯得到好轉(zhuǎn),針對(duì)政府這一行為,老百姓大大點(diǎn)贊.

(1)某機(jī)構(gòu)隨機(jī)訪(fǎng)問(wèn)50名居民,這50名居民對(duì)政府的評(píng)分(滿(mǎn)分100分)如下表:

分?jǐn)?shù)

頻數(shù)

2

3

11

14

11

9

請(qǐng)?jiān)诖痤}卡上作出居民對(duì)政府的評(píng)分頻率分布直方圖:

(2)當(dāng)?shù)丨h(huán)保部門(mén)隨機(jī)抽測(cè)了2018年11月的空氣質(zhì)量指數(shù),其數(shù)據(jù)如下表:

空氣質(zhì)量指數(shù)(

0-50

50-100

100-150

150-200

天數(shù)

2

18

8

2

用空氣質(zhì)量指數(shù)的平均值作為該月空氣質(zhì)量指數(shù)級(jí)別,求出該月空氣質(zhì)量指數(shù)級(jí)別為第幾級(jí)?(同一組數(shù)據(jù)用該組數(shù)據(jù)的區(qū)間中點(diǎn)值作代表,將頻率視為概率)(相關(guān)知識(shí)參見(jiàn)附表)

(3)空氣受到污染,呼吸系統(tǒng)等疾病患者最易感染,根據(jù)歷史經(jīng)驗(yàn),凡遇到空氣輕度污染,小李每天會(huì)服用有關(guān)藥品,花費(fèi)50元,遇到中度污染每天服藥的費(fèi)用達(dá)到100元.環(huán)境整治前的2015年11月份小李因受到空氣污染患呼吸系統(tǒng)等疾病花費(fèi)了5000元,試估計(jì)2018年11月份(參考(2)中表格數(shù)據(jù))小李比以前少花了多少錢(qián)的醫(yī)藥費(fèi)?

附:

空氣質(zhì)量指數(shù)(

0-50

50-100

100-150

150-200

200-300

空氣質(zhì)量指數(shù)級(jí)別

空氣質(zhì)量指數(shù)

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】歷史上數(shù)列的發(fā)展,折射出許多有價(jià)值的數(shù)學(xué)思想方法,對(duì)時(shí)代的進(jìn)步起了重要的作用,比如意大利數(shù)學(xué)家列昂納多·斐波那契以兔子繁殖為例,引入“兔子數(shù)列”:即1,1,2,3,5,8,13,21,34,55,89,144,233,….即,此數(shù)列在現(xiàn)代物理、準(zhǔn)晶體結(jié)構(gòu)及化學(xué)等領(lǐng)域有著廣泛的應(yīng)用,若此數(shù)列被4整除后的余數(shù)構(gòu)成一個(gè)新的數(shù)列,又記數(shù)列滿(mǎn)足,,,則的值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地統(tǒng)計(jì)局就該地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫(huà)了樣本的頻率分布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在[1000,1500))

(1)求居民月收入在[2000,2500)的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)在月收入為[2500,3000),[3000,3500),[3500,4000]的三組居民中,采用分層抽樣方法抽出90人作進(jìn)一步分析,則月收入在[3000,3500)的這段應(yīng)抽多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知拋物線(xiàn)Cx2=4y的焦點(diǎn)為F,直線(xiàn)l與拋物線(xiàn)C交于A,B兩點(diǎn),延長(zhǎng)AF交拋物線(xiàn)C于點(diǎn)D,若AB的中點(diǎn)縱坐標(biāo)為|AB|-1,則當(dāng)∠AFB最大時(shí),|AD|=( 。

A. 4B. 8C. 16D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知棱柱的底面是菱形,且ABCD,F為棱的中點(diǎn),M為線(xiàn)段的中點(diǎn).

1)求證:ABCD;

2)判斷直線(xiàn)MF與平面的位置關(guān)系,并證明你的結(jié)論;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡(單位:歲)分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場(chǎng)的宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?

(2)請(qǐng)根據(jù)頻率分布直方圖,估計(jì)這100名志愿者樣本的平均數(shù);

(3)在(1)的條件下,該市決定在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.(參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案